Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T22:55:24.306Z Has data issue: false hasContentIssue false

Salmonella and Arizona in reptiles and man in Western Australia

Published online by Cambridge University Press:  15 May 2009

J. B. Iveson
Affiliation:
Salmonella Diagnostic and Reference Laboratory, Public Health Laboratory Service, Western Australia
E. M. Mackay-Scollay
Affiliation:
Salmonella Diagnostic and Reference Laboratory, Public Health Laboratory Service, Western Australia
V. Bamford
Affiliation:
Salmonella Diagnostic and Reference Laboratory, Public Health Laboratory Service, Western Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Ninety-seven (83.6%) of 116 reptiles, comprising 70 lizards, 40 snakes, 4 tortoises and 2 crocodiles, yielded isolations of organisms in the Salmonella and/or Arizona groups.

2. The reptiles were captive or free-ranging; the former were drawn from all states of mainland Australia, while the latter were from West Australia only.

3. The relative prominence of Salmonella serotypes containing numerically high somatic antigens, the finding of new serotypes, of multiple infections, and of strains in subgenera II and III was remarked.

4. The lack of evidence of differences in the serotypes isolated from captive or wild reptiles (except for the isolation of S. typhimurium in creatures closely associated with man and his domestic fauna), and the apparent absence of a specific geographical distribution of serotypes in reptiles, lent support to the con clusion that reptiles provide a natural reservoir for Salmonella and Arizona strains in Australia. The possible spill-over to man, his domestic animals and his food stuffs is discussed.

It is a pleasure to record our indebtedness to Dr Joan Taylor for her continuous interest and support in providing confirmation and identification of many Salmonella serotypes; to Dr W. H. Ewing and later Dr R. Rhode for serotyping the Arizona strains; to Dr G. M. Storr, Curator of Reptiles in the Museum of Western Australia, for identifying the reptiles and to Dr W. S. Davidson, Commissioner of Public Health, Western Australia, for permission to publish.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

References

Bettencourt, A. & Borges, I. (1908). Peut-on distinguer le Coli bacille de l'homme do celui des animaux au moyen de la fixation du complement? Archos R. Inst. bact. Cámara Pestana Tome ii, 2, 245.Google Scholar
Boycott, J. A., Taylor, J. & Douglas, S. H. (1953). Salmonella in tortoises. J. Path. Bact. 65, 401.CrossRefGoogle ScholarPubMed
Brookes, M. M. & Fife Asbury, M. A. (1966). Twenty-two new Arizona serotypes isolated from coconut, bonemeal, dried egg, and reptiles. Mon. Bull. Minist. Hlth 25, 230.Google Scholar
Buttiaux, R. & Kesteloot, A. (1948). Les ‘B. para-coli‘ du groupe Arizona. Leur pouvoir pathogéne chez l'homme Annls Inst. Pasteur, Paris 75, 379.Google Scholar
Caldwell, M. E. & Ryerson, D. L. (1939). Salmonellosis in certain reptiles. J. infect. Dis. 65, 242.CrossRefGoogle Scholar
Collard, P. & Sen, R. (1960). Serotypes of salmonella at Ibadan, Nigeria, with special note of the new serotypes isolated in Nigeria. J. infect. Dis. 106, 270.CrossRefGoogle ScholarPubMed
Edwards, P.R., Cherry, W. B. & Bruner, D. W. (1943). Further studies on coliform bacteria serologically related to the genus Salmonella. J. infect. Dis. 73, 229.CrossRefGoogle Scholar
Edwards, P. R., Fife, M. A. & Ramsey, C. H. (1959). Studies on the Arizona group of Enterobacteriaceae. Bact. Rev. 23, 155.CrossRefGoogle ScholarPubMed
Ewing, W. H., Mcwhorter, A. C., Escobar, M. R. & Lubin, A. H. (1965). Edwardsiella, a new genus of Enterobacteriaceae based on a new species, E. tarda. Int. Bull. bact. Nomencl. Taxon. 15, 33.Google Scholar
Fulton, Mc., Szafran, P. & Lesko, N. M. (1961). Five less common Salmonella serotypes from Congo reptiles. Nature, Lond. 189, 240.CrossRefGoogle ScholarPubMed
Guckian, J. C., Byers, E. H. & Perry, J. E. (1967). Arizona infection of man. Archs intern. Med. 119, 170.CrossRefGoogle ScholarPubMed
Hinshaw, W. R. & Mcneil, E. (1945). Salmonella types isolated from snakes. Am. J. vet. Res. 6, 246.Google ScholarPubMed
Hinshaw, W. R. & Mcneil, E. (1947). Lizards as carriers of salmonella and paracolon bacteria. J. Bact. 53, 715.CrossRefGoogle ScholarPubMed
Hobbs, B. C. (1943). A note on the preparation of bismuth sulphite agar. Mon. Bull. Minist. Hlth 2, 28.Google Scholar
Iveson, J. B. & Kovacs, N. (1967). A comparative trial of Rappaport enrichment for the isolation of Salmonellae from faeces. J. clin. Path. 20, 290.CrossRefGoogle ScholarPubMed
Johnston, T. H. (1932). The parasites of the ‘stumpy-tail‘ lizard Trachysaurus rugosus. Trans. R. Soc. S. Aust. 56, 62.Google Scholar
Kauffmann, F. (1956). On biochemical investigations of enterobacteriaceae. Acta path. microbiol. scand. 39, 85.CrossRefGoogle ScholarPubMed
Konrich., (1910). Zur Bewertung des Bacterium coli im Wasser. Klin. Jb. 23, 1.Google Scholar
Krag, D. & Shean, D. B. (1959). Serious human infection due to bacilli of the Arizona group. Calif. Med. 90, 230.Google ScholarPubMed
Lee, P. E. & Mackerras, I. M. (1955). Salmonella infections of Australian native animals. Aust. J. exp. Biol. med. Sci. 33, 117.CrossRefGoogle ScholarPubMed
Leifson, E. (1936). A new selenite medium for the isolation of Salmonella. Am. J. Hyg. 24, 423.Google Scholar
Le Minor, L., Fife, M. A. & Edwards, P. R. (1958). Recherches sur les Salmonella et Arizona hébergess par les vipéres de France. Annls. Inst. Pasteur, Paris 95, 326.Google Scholar
Mcneil, E. & Hinshaw, W. R. (1944). Snakes, cats and flies as carriers of Salmonella typhi murium. Poultry Sci. 23, 456.CrossRefGoogle Scholar
Mcneil, E. & Hinshaw, W. R. (1946). Salmonella from Galapagos turtles, a Gila monster and an iguana. Am. J. vet. Res. 7, 62.Google Scholar
Mackerras, M. J. (1961). The haematozoa of Australian reptiles. Aust. J. Zool. 9, 61.CrossRefGoogle Scholar
Mackerras, M. J. (1962). Filarial parasites (Nematoda: Filarioda) of Australian animals. Aust. J. Zool. 10, 400.CrossRefGoogle Scholar
Mackey, J. P. (1955). Salmonellosis in Dar es Salaam. E. Afr. med. J. 32, 1.Google ScholarPubMed
Murphy, W. J. & Morris, J. F. (1950). Two outbreaks of gastro-enteritis apparently caused by a paracolon of the Arizona group. J. infect. Dis. 86, 255.CrossRefGoogle Scholar
Parker, R. R. & Steinhaus, E. A. (1943). Salmonella enteritidis: experimental transmission by the Rocky Mountain wood tick Dermacentor andersoni Stiles. Publ. Hlth Rep., Wash. 58, 1010.CrossRefGoogle Scholar
Rappaport, F., Konforti, N. & Navon, B. (1956). A new enrichment medium for certain salmonellae. J. clin. Path. 9, 261.CrossRefGoogle Scholar
Rewell, R. E., Taylor, J. & Douglas, S. H. (1948). A new salmonella type (S. Talcoradi) isolated from a python. Mon. Bull. Minist. Hlth 7, 266.Google Scholar
Rudat, K.-D., Beck, G., Frank, W. & Rugowsky, G. M. (1966). Über das Vorkommen von Salmonellen bei Reptilien in Zoologischen Gärten. Pathologia Microbiol. 29, 623.Google Scholar
Sachs, A. (1939). Difficulties associated with the bacteriological diagnosis of bacillary dysentery. Jl R. Army med. Cps 73, 235.Google Scholar
Stenzel, W. (1960). Die Sorbosespaltung als Kriterium in der Diagnostik pathogener Enterobacteriaceen. Zentbl. Bakt. ParasitKde (Abt. I). Orig. 180, 19.Google Scholar