Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T16:22:40.511Z Has data issue: false hasContentIssue false

Rabbit nasopharyngeal colonization by Bordetella pertussis: the effects of immunization on clearance and on serum and nasal antibody levels

Published online by Cambridge University Press:  25 March 2010

L. A. E. Ashworth
Affiliation:
Pathogenic Microbes Research Laboratory, PHLS Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, England
R. B. Fitzgeorge
Affiliation:
Pathogenic Microbes Research Laboratory, PHLS Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, England
L. I. Irons
Affiliation:
Pathogenic Microbes Research Laboratory, PHLS Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, England
C. P. Morgan
Affiliation:
Pathogenic Microbes Research Laboratory, PHLS Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, England
A. Robinson
Affiliation:
Pathogenic Microbes Research Laboratory, PHLS Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, England
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two Bordetella pertussis antigen preparations, outer membrane protein (OMP) and filamentous haemagglutinin (FHA), and a standard vaccine were used to immunize rabbits, and the effects on nasopharyngeal colonization by the organism were determined. Antibodies were measured in serum and in nasal washes by ELISA before and after challenge of the rabbits with 106 bacteria of strain M2. Recoveries of B. pertussis in nasal washes were used to assess colonization, which in controls persisted for at least 65 days. Some rabbits of all the immunized groups showed enhanced clearance, but there was no correlation between the elimination of B. pertussis and serum antibodies to OMP, FHA, lipopolysaccharide, lymphocytosis-promoting factor or agglutinogen 3. In contrast, nasal IgA antibody to FHA showed significant inverse correlation with bacterial persistence. Such antibody was induced by the OMP preparation as well as by FHA, but to different extents depending on the immunization schedule and adjuvant used.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Bienenstock, J. & Befus, A. D. (1980). Mucosal immunology. Immunology 41, 249270.Google ScholarPubMed
Bronne-Shanbury, C. J. & Dolby, J. M. (1976). The stability of the serotypes of Bordetella pertussis with particular reference to serotype 1, 2, 3, 4. Journal of Hygiene 76, 277286.CrossRefGoogle Scholar
Cebra, J. J. & Robbins, J. B. (1966). γA-Immunoglobulin from rabbit colostrum. Journal of Immunology 97, 1224.CrossRefGoogle Scholar
Halsey, J. F., Johnson, B. H. & Cebra, J. J. (1980). Transport of immunoglobulins from serum into colostrum. Journal of Experimental Medicine 151, 767772.CrossRefGoogle ScholarPubMed
Hof, H., Finger, H., Körner, L. & Milcke, L. (1976). Effectiveness of orally administered Bordetella pertussis vaccine in mice. Developments in Biological Standardization 33, 4753.Google ScholarPubMed
Holt, L. B. (1972). The pathology and immunology of Bordetella pertussis infection. Journal of Medical Microbiology 5, 407424.CrossRefGoogle ScholarPubMed
Irons, L. I. & MacLennan, A. P. (1979a). Substrate specificity and the purification by affinity combination methods of the two Bordetella pertussis haemagglutinins. In International Symposium on Pertussis (ed. Manclark, C. R. and Hill, J. C.), pp. 338349. Department of Health, Education and Welfare Publication no. 79–1830. Washington D.C.: U.S. Government Printing Office.Google Scholar
Irons, L. I. & MacLennan, A. P. (1979b). Isolation of the lymphocytosis promoting factorhaemagglutinin of Bordetella pertussis by affinity chromatography. Biochimica et Biophysica Acta 580, 175185.CrossRefGoogle ScholarPubMed
Lane, A. G. (1970). Use of glutamic acid to supplement fluid medium for cultivation of Bordetella pertussis. Applied Microbiology 19, 512520.CrossRefGoogle ScholarPubMed
Linnemann, C. C. Jr., (1979). Host-parasite interactions in pertussis. In International Symposium on Pertussis (ed. Manclark, C. R. and Hill, J. C.), pp. 318. Department of Health, Education and Welfare Publication no. 79–1830. Washington D.C.: U.S. Government Printing Office.Google Scholar
MacLennan, A. P. (1960). Specific lipopolysaccharides of Bordetella. Biochemical Journal 74, 398–109.CrossRefGoogle ScholarPubMed
Mallory, F. B. & Horner, A. A. (1912). Pertussis: the histological lesion in the respiratory tract. Journal of Medical Research 27, 115123.Google ScholarPubMed
Maurer, H., Hofler, K. H., Hilbe, W. & Huber, E. G. (1979). Erste Ergebnisse mit oraler Keuchhustenimpfung bei jungen Säuglingen. Wiener klinische Wochenschrift 91, 717720.Google Scholar
Munoz, J. J., Arai, H. & Cole, R. L. (1981). Mouse-protecting and histamine-sensitizing activities of pertussigen and fimbrial hemagglutinin from Bordetella pertussis. Infection and Immunity 32, 243250.CrossRefGoogle ScholarPubMed
Muse, K. E., Collier, A. M. & Baseman, J. B. (1977). Scanning electron microscopic study of hamster tracheal organ cultures infected with Bordetella pertussis. Journal of Infectious Diseases 136, 768777.CrossRefGoogle ScholarPubMed
Nakane, P. K.& Kawaoi, A. (1974). Peroxidase-labelled antibody. A new method of conjugation. Journal of Histochemistry and Cytochemistry 22, 10841091.CrossRefGoogle Scholar
Pittman, M. (1979). Pertussis toxin: the cause of the harmful effects and prolonged immunity of whooping cough. A hypothesis. Reviews of Infectious Diseases 1, 401412.CrossRefGoogle ScholarPubMed
Pittman, M., Furman, B. L. & Wardlaw, A. C. (1980). Bordetella pertussis respiratory tract infection in the mouse: pathophysiological responses. Journal of Infectious Diseases 142, 5665.CrossRefGoogle ScholarPubMed
Preston, N. W., Timewell, R. M. & Carter, E. J. (1980). Experimental pertussis infection in the rabbit: similarities with infection in primates. Journal of Infection 2, 227235.CrossRefGoogle ScholarPubMed
Robinson, A., Hawkins, D. C. & Irons, L. I. (1981). The preparation of distinct protective antigens from Bordetella pertussis. FEMS Microbiology Letters 10, 241244.CrossRefGoogle Scholar
Robinson, A. & Manchee, R. J. (1979). Solubilization of the protective antigens of Bordetella pertussis. FEMS Microbiology Letters 5, 131134.CrossRefGoogle Scholar
Sato, Y., Arai, H. & Suzuki, K. (1974). Leukocytosis-promoting factor of Bordetella pertussis. III. Its identity with protective antigens. Infection and Immunity 9, 801810.CrossRefGoogle Scholar
Sato, Y., Izumiya, K., Sato, H., Cowell, J. L. & Manclark, C. R. (1980). Aerosol infection of mice with Bordetella pertussis. Infection and Immunity 29, 261266.CrossRefGoogle ScholarPubMed
Sato, Y., Izumiya, K., Sato, H., Cowell, J. L. & Manclark, C. R. (1981). Role of antibody to leukocytosis-promoting factor hemagglutinin and to filamentous hemagglutinin in immunity to pertussis. Infection and Immunity 31, 12231231.CrossRefGoogle ScholarPubMed
Stickl, H., Schweier, P. & van Thiel, D. (1976). Preliminary results with an oral application of killed pertussis bacteria in newborn infants. Developments in Biological Standardization 33, 5456.Google ScholarPubMed
Thomas, G. (1975). Respiratory and humoral immune response to aerosol and intramuscular pertussis vaccine. Journal of Hygiene 74, 233237.CrossRefGoogle ScholarPubMed
Waldman, R. H. & Ganguly, R. (1974). Immunity to infections on secretory surfaces. Journal of infectious Diseases 130, 419440.CrossRefGoogle ScholarPubMed