Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T17:25:14.591Z Has data issue: false hasContentIssue false

Production of Non-Infective Particles among Influenza Viruses: Do Changes in Virulence Accompany the von Magnus phenomenon?

Published online by Cambridge University Press:  15 May 2009

S. Fazekas de St Groth
Affiliation:
Department of Microbiology, Australian National University, Canberra
P. A. P. Moran
Affiliation:
Department of Microbiology, Australian National University, Canberra
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two new statistical methods—one parametric, the other non-parametric—are developed to compare the slopes of quantal infectivity curves.

Ten influenza strains were examined with the aid of these tests, and the results show that virus yielded by the von Magnus phenomenon (i.e. containing ‘incomplete’ particles) and standard infective virus do not differ in the slope of their infectivity curves.

It is concluded that the von Magnus phenomenon yields a mixture of infective and non-infective particles; on this evidence Fulton's suggestion of uniformly changed virulence is untenable.

I am greatly indebted to Prof. P. A. P. Moran for helpful discussions of theory, and frequent corrections of statistical technique.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1955

References

Andrewes, C. H., Laidlaw, P. P. & Smith, W. (1934). Lancet, ii, 859.CrossRefGoogle Scholar
Behrens, B. (1929). Arch. exp. Path. 140, 237.CrossRefGoogle Scholar
Burnet, F. M. (1941 a). Aust. J. exp. Biol. med. Sci. 19, 39.CrossRefGoogle Scholar
Burnet, F. M. (1941 b), Aust. J. exp. Biol. med. Sci. 19, 101.CrossRefGoogle Scholar
Burnet, F. M. (1943). Aust. J. exp. Biol. med. Sci. 21, 231.CrossRefGoogle Scholar
Burnet, F. M. & Bull, D. R. (1943). Aust. J. exp. Biol. med. Sci. 21, 55.CrossRefGoogle Scholar
Burnet, F. M., Beveridge, W. I. B. & Bull, D. R. (1944). Aust. J. exp. Biol. med. Sci. 22, 9.CrossRefGoogle Scholar
Dragstedt, C. A. & Lang, V. F. (1928). J. Pharmacol. 32, 215.Google Scholar
Fazekas de St Groth, S. & Cairns, H. J. F. (1952). J. Immunol. 69, 173.CrossRefGoogle Scholar
Fazekas de St Groth, S. & Graham, D. M. (1953). Nature, Lond., 172, 1193.CrossRefGoogle Scholar
Fazekas de St Groth, S. & Graham, D. M. (1954). Brit. J. exp. Path. 35, 60.Google Scholar
Fenner, F. & Woodroofe, G. M. (1953). Brit. J. exp. Path. 34, 400.Google Scholar
Fulton, F. (1953). Bull. Hyg., Lond., 28, 292.Google Scholar
Knight, C. A. (1944). J. exp. Med. 79, 487.CrossRefGoogle Scholar
Knight, C. A. & Stanley, W. M. (1944). J. exp. Med. 79, 291.CrossRefGoogle Scholar
von Magnus, P. (1951 a). Acta path. microbiol. scand. 28, 250.CrossRefGoogle Scholar
von Magnus, P. (1951 b). Acta path. microbiol. scand. 28, 278.CrossRefGoogle Scholar
von Magnus, P. (1954). Dynamics of Virus and Rickettsial Infections, p. 36. (Ed. Hartmann, , Horsfall, & Kidd, .) New York: Blackiston Co.Google Scholar
Moran, P. A. P. (1954 a). J. Hyg., Camb., 52, 189.CrossRefGoogle Scholar
Moran, P. A. P. (1954 b), J. Hyg., Camb., 52, 444.CrossRefGoogle Scholar
Panthier, R., Cateigne, G. & Hannoun, C. (1948). C.R. Soc. Biol., Paris, 142, 1354.Google Scholar
Reed, L. J. & Muench, H. (1938). Amer. J. Hyg. 27, 493.Google Scholar
Schlesinger, R. W. (1953). Ann. Rev. Microbiol. 7, 83.CrossRefGoogle Scholar
Sherp, H. W., Flosdorf, E. W. & Shaw, D. R. (1938). J. Immunol. 34, 447.CrossRefGoogle Scholar