Hostname: page-component-5f745c7db-rgzdr Total loading time: 0 Render date: 2025-01-07T05:01:52.796Z Has data issue: true hasContentIssue false

Presence of a dialysable fraction in normal bovine whey capable of killing several species of bovine mycoplasmas

Published online by Cambridge University Press:  15 May 2009

C. J. Howard
Affiliation:
Agricultural Research Council, Institute for Research on Animal Diseases, Compton, Newbury, Berkshire
J. Brownlie
Affiliation:
Agricultural Research Council, Institute for Research on Animal Diseases, Compton, Newbury, Berkshire
R. N. Gourlay
Affiliation:
Agricultural Research Council, Institute for Research on Animal Diseases, Compton, Newbury, Berkshire
Jacqueline Collins
Affiliation:
Agricultural Research Council, Institute for Research on Animal Diseases, Compton, Newbury, Berkshire
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most normal bovine whey samples contain a fraction that survives heating at 56° C. for 30 min., passes through a dialysis membrane and kills a maximum of seven out of ten of the different bovine mycoplasma species tested. Some whey samples appear more active than others but not all affect the same strains of mycoplasma indicating some specificity in their action. Absorption of the active factor from whey by heterologous and homologous mycoplasmas and by erythrocytes was observed. Binding of the factor to mycoplasmas appears to be temperature-dependent and non-specific, but subsequent mycoplasmacidal action shows some specificity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Andrews, B. E., Leach, R. H., Gourlay, R. N. & Howard, C. J. (1973). Enhanced isolation of Mycoplasma dispar by substitution of ampicillin for benzylpenicillin in growth media. Veterinary Record 93, 603.CrossRefGoogle ScholarPubMed
Brownlie, J. & Hibbitt, K. G. (1972). Antimicrobial proteins isolated from bovine cervical mucus. Journal of Reproduction and Fertility 29, 337–47.CrossRefGoogle ScholarPubMed
Brownlie, J., Howard, C. J. & Gourlay, R. N. (1974 a). Mycoplasmacidal activity of bovine milk for T-mycoplasmas. Journal of Hygiene 73, 415–23.CrossRefGoogle ScholarPubMed
Brownlie, J., Howard, C. J. & Gourlay, R. N. (1974 b). Comparative pathogenicity of certain bovine mycoplasmas in the bovine mammary gland. Proceedings of the Society for General Microbiology (in the Press).Google Scholar
Edward, D. G.ff. & Fitzgerald, W. A. (1954). Inhibition of growth of pleuropneumonialike organism by antibody. Journal of Pathology and Bacteriology 68, 2330.CrossRefGoogle ScholarPubMed
Fabricant, J. (1973). The pathogenicity of bovine mycoplasmas. Annals of the New York Academy of Sciences 225, 369–81.CrossRefGoogle Scholar
Furness, G. (1973). T-mycoplasmas: Some factors affecting their growth, colony morphology, and assay on agar. Journal of Infectious Diseases 128, 703–9.CrossRefGoogle ScholarPubMed
Gourlay, R. N. (1973). Significance of mycoplasma infections in cattle. Journal of the American Veterinary Medical Association 163, 905–9.Google Scholar
Gourlay, R. N., Howard, C. J. & Brownlie, J. (1972). The production of mastitis in cows by the intrammamary inoculation of T-mycoplasmas. Journal of Hygiene 70, 511–21.CrossRefGoogle Scholar
Gourlay, R. N. & Leach, R. H. (1970). A new mycoplasma species isolated from pneumonic lungs of calves (Mycoplasma dispar sp.nov.). Journal of Medical Microbiology 3, 111–23.CrossRefGoogle ScholarPubMed
Gourlay, R. N., Leach, R. H. & Howard, C. J. (1974). Mycoplasma verecundum, a new species isolated from bovine eyes. Journal of General Microbiology 81, 475–84.Google ScholarPubMed
Gourlay, R. N., Mackenzie, A. & Cooper, J. E. (1970). Studies of the microbiology and pathology of pneumonic lungs of calves. Journal of Comparative Pathology 80, 575–84.CrossRefGoogle ScholarPubMed
Gourlay, R. N. & Wyld, S. G. (1972). Some biological characteristics of Mycoplasmatales virus-laidlawii 1. Journal of General Virology 14, 1523.CrossRefGoogle Scholar
Hibbitt, K. G., Cole, C. B. & Reiter, B. (1969). Antimicrobial proteins isolated from the teat canal of the cow. Journal of General Microbiology 56, 365–71.CrossRefGoogle ScholarPubMed
Howard, C. J. & Gourlay, R. N. (1973). Inhibition by normal rabbit sera of the growth of T-mycoplasma strains isolated from different animal species. Journal of General Microbiology 78, 277–85.CrossRefGoogle ScholarPubMed
Howard, C. J. & Gourlay, R. N. (1974). An electron-microscopic examination of certain bovine mycoplasma stained with ruthenium red and the demonstration of a capsule on Mycoplasma dispar. Journal of General Microbiology 83, 393–8.CrossRefGoogle ScholarPubMed
Howard, C. J., Gourlay, R. N. & Brownlie, J. (1973). The virulence of T-mycoplasmas, isolated from various animal species, assayed by intramammary inoculation in cattle. Journal of Hygiene 71, 163–70.CrossRefGoogle ScholarPubMed
Howard, C. J., Gourlay, R. N. & Collins, J. (1974). Serological comparison and haemagglutinating activity of Mycoplasma dispar. Journal of Hygiene 73, 457–66.CrossRefGoogle ScholarPubMed
Kaklamanis, E., Stavropoulos, K. & Thomas, L. (1971). The mycoplasmacidal action of homogenates of normal tissue. In Mycoplasma and L-forms of Bacteria(Ed. Madoff, S.), pp. 2635. London: Gordon & Breach.Google Scholar
Langer, P. H. & Carmichael, L. E. (1963). Identification of pneumoenteritis isolates from cattle as Mycoplasma. Proceedings of the 67th Meeting of the U.S. Livestock Sanitary Association, pp. 129–37.Google Scholar
Mardh, P. A. & Taylor-Robinson, D. (1973). The differential effect of lysolecithin on myco-plasmas and acholeplasmas. Medical Microbiology and Immunology 158, 219–26.CrossRefGoogle Scholar
Muller-Eberhard, H. J., Nilsson, U. R., Dalmasso, A. P., Polley, M. J. & Calcott, M. A. (1966). A molecular concept of immune cytolysis. Archives of Pathology 82, 205–17.Google ScholarPubMed
Oram, J. D. & Reiter, B. (1968). Inhibition of bacteria by lactoferrin and other iron chelating agents. Biochimica et biophysica acta 170, 351–65.CrossRefGoogle ScholarPubMed
Razin, S., Rottem, S., Hasin, M. & Gershfeld, N. L. (1973). Binding of exogenous proteins and lipids to mycoplasma membranes. Annals of the New York Academy of Sciences 225, 2837.CrossRefGoogle Scholar
Roberts, D. H. (1971). Interaction of porcine mycoplasmas with fresh animal serum. Journal of Hygiene 69, 361–8.CrossRefGoogle ScholarPubMed
Rottem, S., Hasin, M. & Razin, S. (1973). Binding of proteins to mycoplasma membranes. Biochimica et biophysica acta 298, 876–86.CrossRefGoogle ScholarPubMed
Shepard, M. C., Lunceford, C. D., Ford, D. K., Purcell, R. H., Taylor-Robinson, D., Razin, S. & Black, F. T. (1974). Ureaplasma urealyticum gen.nov., sp.nov.: Proposed nomenclature for the human T (T-strain) mycoplasmas. International Journal of Systematic Bacteriology 24, 160–71.CrossRefGoogle Scholar
Taylor-Robinson, D., Thomas, M. & Dawson, P. L. (1969). The isolation of T-mycoplasmas from the urogenital tract of bulls. Journal of Medical Microbiology 2, 527–33.CrossRefGoogle ScholarPubMed
Wilson, A. T. & Rosenblum, H. (1952). The antistreptococcal property of milk. I. Some characteristics of the activity of lactenin in vitro. The effect of lactenin on haemolytic streptococci of the several serological groups. Journal of Experimental Medicine 95, 2538.CrossRefGoogle Scholar