Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T19:27:19.553Z Has data issue: false hasContentIssue false

Past exposure and the dynamics of lymphatic filariasis infection in young children

Published online by Cambridge University Press:  15 May 2009

A. Srividya
Affiliation:
Vector Control Research Centre, Medical Complex, Indira Nagar, Pondicherry -605006, India
P. K. Das
Affiliation:
Vector Control Research Centre, Medical Complex, Indira Nagar, Pondicherry -605006, India
S. Subramanian
Affiliation:
Vector Control Research Centre, Medical Complex, Indira Nagar, Pondicherry -605006, India
K. D. Ramaiah
Affiliation:
Vector Control Research Centre, Medical Complex, Indira Nagar, Pondicherry -605006, India
B. T. Grenfell
Affiliation:
Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ
E. Michael
Affiliation:
Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ
D. A. P. Bundy
Affiliation:
Centre for the Epidemiology of Infectious Disease, University of Oxford, South Parks Road, Oxford OXI 3PS
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This study utilizes parallel, longitudinal entomological and parasitological data collected during a 5-year vector control programme in Pondicherry, South India, to quantify Wuchereria bancrofti transmission from the vector to the human population. A simple mathematical model, derived from the standard catalytic model, is used to examine the hypothesis that current infection prevalence in young children is a dynamical function of their cumulative past exposure to infective bites. Maximum likelihood fits of the model to the observed data indicate a constant child infection rate with age, above a threshold representing the pre-patent period, or equivalently, the cumulative biting intensity required to produce patent infections. Extrapolation of the model allows the crude estimation of the equilibrium microfilaria age-prevalence curve due to control. The results suggest that vector control alone may have little impact on the overall age-prevalence of infection even when sustained for long periods. These observations are discussed in terms of the likely impact of density dependent mechanisms, such as acquired immunity, on model predictions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

1Hairston, NG, Jachowski, LA. Analysis of the Wuchereria bancrofti population in the people of American Samoa Bull WHO 1968; 38: 2959.Google Scholar
2de Meillon, B, Hayashi, S, Sebastian, A. Infection and reinfection of Culex pipiens fatigans with Wuchereria bancrofti and the loss of mature larvae in blood feeding. Bull WHO 1967; 36: 8190.Google Scholar
3Pichon, G. Relations mathématiques enter le nombre des microfilaires ingrées et le nombre des parasites chez différents vecteurs naturels ou expérimentaux de filarioses. Cahiers ORSTOM Sér Entomologie médicale et Parasitologie 1974; 12: 199216.Google Scholar
4Pichon, G, Merlin, M, Fagneaux, G, Riviere, F, Laigret, J. Etude de la distribution des numérations microfilariennes dans les foyers de filariose lymphatique. Tropenmedizin und Parasitologie 1980; 31: 165–80.Google Scholar
5Rajagopalan, PK, Kazmi, SJ, Mani, TR. Some aspects of transmission of Wuchereria bancrofti and ecology of the vector Culex pipiens fatigans in Pondicherry. Indian J Med Res 1977; 66: 200–15.Google Scholar
6Rajagopalan, PK, Das, PK, Subramanian, S, Vanamail, P, Ramaiah, KD. Bancroftian filariasis in Pondicherry, South India. 1. Pre-control epidemiological observations. Epidemiol Infect 1989; 103: 685–92.CrossRefGoogle ScholarPubMed
7Subramanian, S, Pani, SP, Das, PK, Rajagopalan, PK. Bancroftian filariasis in Pondicherry, south India. 2. Epidemiological evaluation of the effect of vector control Epidemiol Infect 1989; 103: 693702.Google ScholarPubMed
8Park, CB, Microfilaria density distribution in the human population and its infectivity index for the mosquito population. Parasitology 1988; 96: 265–71.Google Scholar
9Das, PK, Manoharan, A, Subramanian, S, et al. Bancroftian filariasis in Pondicherry, South India–epidemiological impact of recovery of the vector population. Epidemiol Infect 1992; 1008: 483–93.Google Scholar
10Webber, RH. Eradication of Wuchereria bancrofti infection through vector control. Trans R Soc Trop Med Hyg 1979; 73: 722–4.CrossRefGoogle ScholarPubMed
11Webber, RH, Southgate, BA. The maximum density of anopheline mosquitoes that can be permitted in the absence of continuing transmission of filariasis. Trans R Soc Trop Med Hyg 1981; 75: 499506.Google Scholar
12Dye, C. Does facilitation imply a threshold for the eradication of lymphatic filariasis? Parasitology Today 1992; 8: 109–10.CrossRefGoogle ScholarPubMed
13Vanamail, P, Subramanian, S, Das, PK, et al. Estimation of age-specific rates of acquisition and loss of Wuchereria bancrofti infection. Trans R Soc Trop Med Hyg 1989; 83: 689–93.CrossRefGoogle ScholarPubMed
14Grenfell, BT, Das, PK, Rajagopalan, PK, Bundy, DAP. Frequency distribution of lymphatic filariasis microfilariae in human populations: population processes and statistical estimation. Parasitology 1990; 101: 417–27.Google Scholar
15Das, PK, Manoharan, A, Srividya, A, Grenfell, BT, Bundy, DAP, Vanamail, P. Frequency distribution of Wuchereria bancrofti microfilariae in human populations and its relationships with age and sex. Parasitology 1990; 101: 429–34.Google Scholar
16Srividya, A, Krishnamoorthy, K, Sabesan, S, Panicker, KN, Grenfell, BT, Bundy, DAP. Frequency distribution of Brugia malayi microfilariae in human populations. Parasitology 1991; 102: 207–12.CrossRefGoogle ScholarPubMed
17Srividya, A, Pani, SP, Rajagopalan, PK, Bundy, DAP, Grenfell, BT. The dynamics of infection and disease in bancroftian filariasis. Trans R Soc Trop Med Hyg 1991; 85: 255–9.Google Scholar
18Bundy, DAP, Grenfell, BT, Rajagopalan, PK. Immuno-epidemiology of lymphatic filariasis: the relationship between infection and disease. In: Ash, C, Gallagher, RB (eds) Immunoparasitology today. Cambridge: Elsevier Trends Journals, 1991: A71A75.Google Scholar
19Pani, SP, Balakrishnan, N, Srividya, A, Bundy, DAP, Grenfell, BT. Clinical epidemiology of bancroftian filariasis: effect of age and gender. Trans R Soc Trop Med Hyg 1991; 85: 260–4.Google Scholar
20Grenfell, BT, Michael, E. Infection and disease in lymphatic filariasis – an epidemiologic approach. Parasitology 1991; 104: S81S90.Google Scholar
21Freedman, DO, Nutman, TB, Ottesen, EA. Uninfected endemic individuals recognize distinct larval stage antigens in bancroftian filariasis. Federation Proceedings 1987; 46: 16.Google Scholar
22Kwam-Lim, GE, Forsyth, KP, Maizels, RM. Filarial-specific IgG4 response correlates with active Wuchereria bancrofti infection. J Immunol 1990; 145: 4298–305.CrossRefGoogle Scholar
23Day, KP, Gregory, WF, Maizels, RM. Age-specific acquisition of immunity to infective larvae in a bancroftian filariasis endemic area of Papua New Guinea. Parasite Immunol 1991; 13: 277–90.Google Scholar
24Day, KP, Grenfell, BT, Spark, R, Kazura, JW, Alpers, MP. Age-specific patterns of change in the dynamics of Wuchereria bancrofti infections in Papua New Guinea. Am J Trop Med Hyg 1991; 44: 518–27.Google Scholar
25Lammie, PJ, Hitch, WL, Allen, EMW, Hightower, W, Eberhard, ML. Maternal filarial infections as risk factor for infection in children. Lancet 1991; 337: 1005–6.CrossRefGoogle ScholarPubMed
26Maizels, RM, Lawrence, RA. Immunological tolerance: the key feature in human filariasis. Parasitology Today 1991; 7: 271–6.CrossRefGoogle ScholarPubMed
27Southgate, BA. Intensity and efficiency of transmission and the development of microfilaremia and disease–their relationship in lymphatic filariasis. J Trop Med Hyg 1992; 95: 112.Google Scholar
28Ramaiah, KD, Das, PK, Vijai, Dhanda. Estimation of permissible levels of transmission of bancroftian filari-asis based on some entomological and parasitological results of a five year vector control programme. Acta Tropica 1994; 56: 8996.CrossRefGoogle Scholar
29Vanamail, P, Ramaiah, KD, Das, PK. Risk of infection of Wuchereria bancrofti by Culex quinquefasciatus in Pondicherry and its relationship with microfilaria prevalence. Acta Tropica 1993; 55: 237–47.Google Scholar
30Ramaiah, KD, Das, PK. Seasonality of adult Culex quinquefasciatus and transmission of bancroftian filariasis in Pondicherry, South India. Acta Tropica 1992; 50: 275–83.Google Scholar
31Baker, D, Nelder, JA. GLIM version 3.77. User manual. Oxford: Numerical Algorithms Group, 1978.Google Scholar
32Anderson, RM, May, RM. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press, 1991.CrossRefGoogle Scholar
33Ottesen, EA. Infection and disease in lymphatic filari-asis: an immunological perspective. Parasitology 1992; 104: S71S79.Google Scholar
34Bryan, RS, Southgate, BA. An investigation of the transmission potential of ultra low level Wuchereria bancrofti microfilaria carriers after diethylcarbamazine treatment. WHO/FIL/73.116, 1973.Google Scholar
35Chris, CF, Morgan, PR, Minjas, JN, Maxwell, CA. Insect proofing of Sanitation systems. In: Curtis, CF, ed., Appropriate technology in vector control. United States: CRC Press, 1990: 174–85Google Scholar