Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T13:01:19.111Z Has data issue: false hasContentIssue false

Nasal mucus and influenza viruses. I. The haemagglutinin inhibitor in nasal secretions

Published online by Cambridge University Press:  15 May 2009

S. Fazekas De St Groth
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A technique is developed by which minimal changes in haemagglutinin inhibitors can be detected.

It is shown that the inhibitor index of normal human nasal secretions is 33·2 with a standard deviation of ±7·4. This value is independent of the donor, of the absolute amount of mucus collected, of the time of extraction, and of the period of storage.

Minimal amounts of influenza viruses (less than one agglutinating dose) are capable of causing significant alteration in the inhibitor index upon interaction in vitro for 60 min. at 37° C.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1952

References

REFERENCES

Anderson, S. G. (1947). Aust. J. exp. Biol. med. Sci. 25, 243.CrossRefGoogle Scholar
Anderson, S. G., French, E. L. & Kalra, S. L. (1952). In preparation.Google Scholar
Beveridge, W. I. B. & Burnet, F. M. (1946). The cultivation of viruses and rickettsiae in the chick embryo. Spec. Rep. Ser. med. Res. Coun., Lond., no. 256. H.M.S.O.Google Scholar
Burnet, F. M. (1935). Med. J. Aust. ii, 651.CrossRefGoogle Scholar
Burnet, F. M. (1936). Brit. J. exp. Path. 17, 282.Google Scholar
Burnet, F. M. (1948). Aust. J. exp. Biol. med. Sci. 26, 371.CrossRefGoogle Scholar
Burnet, F. M., Beveridge, W. I. B., Bull, D. R. & Clark, E. (1942). Med. J. Aust. ii, 371.CrossRefGoogle Scholar
Burnet, F. M. & Bull, D. R. (1943). Aust. J. exp. Biol. med. Sci. 21, 55.CrossRefGoogle Scholar
Burnet, F. M., Mccrea, J. F. & Stone, J. D. (1946). Brit. J. exp. Path. 27, 228.Google Scholar
Burnet, F. M. & Stone, J. D. (1947). Aust. J. exp. Biol. med. Sci. 25, 227.CrossRefGoogle Scholar
Burnet, F. M., Stone, J. D. & Anderson, S. G. (1946). Lancet, i, 807.CrossRefGoogle Scholar
Burnet, F. M., Stone, J. D., Isaacs, A. & Edney, M. (1949). Brit. J. exp. Path. 30, 419.Google Scholar
Fazekas De St Groth, S. (1948). Aust. J. exp. Biol. med. Sci. 26, 29.CrossRefGoogle Scholar
Fazekas De St Groth, S. (1950 a). Aust. J. exp. Biol. med. Sci. 28, 15.CrossRefGoogle Scholar
Fazekas De St Groth, S. (1950 b). Lancet, i, 1101.CrossRefGoogle Scholar
Fazekas De St Groth, S. (1951). Nature, Lond., 167, 43.CrossRefGoogle Scholar
Francis, T. (1934). Science, 80, 457.CrossRefGoogle Scholar
Francis, T. (1940). Science, 92, 405.CrossRefGoogle Scholar
Gottschalk, A. (1951). Nature, Lond., 167, 845.CrossRefGoogle Scholar
Gottschalk, A. & Lind, P. E. (1949). Nature, Lond., 164, 232.CrossRefGoogle Scholar
Isaacs, A. & Edney, M. (1950). Brit. J. exp. Path. 31, 196.Google Scholar
Isaacs, A., Edney, M., Donnelley, M. & Ingram, M. W. (1950). Lancet, i, 64.CrossRefGoogle Scholar
Rasmussen, A. F., Stokes, J. C. & Smadel, J. E. (1948). Amer. J. Hyg. 47, 142.Google Scholar
Shope, R. E. (1931). J. exp. Med. 54, 349.CrossRefGoogle Scholar
Smith, W., Andrewes, C. H. & Laidlaw, P. P. (1933). Lancet, ii, 66.CrossRefGoogle Scholar
Stone, J. D. (1946). Aust. J. exp. Biol. med. Sci. 24, 197.CrossRefGoogle Scholar
Stone, J. D. (1947). Aust. J. exp. Biol. med. Sci. 25, 137.CrossRefGoogle Scholar
Stone, J. D. (1949 a). Aust. J. exp. Biol. med. Sci. 27, 229.CrossRefGoogle Scholar
Stone, J. D. (1949 b). Aust. J. exp. Biol. med. Sci. 27, 337.CrossRefGoogle Scholar
Stone, J. D. (1949 c). Aust. J. exp. Biol. med. Sci. 27, 557.CrossRefGoogle Scholar
Stone, J. D. (1951). Brit. J. exp. Path. 32, 367.Google Scholar