Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T11:50:54.717Z Has data issue: false hasContentIssue false

The mycoplasmacidal properties of sodium hypochlorite

Published online by Cambridge University Press:  19 October 2009

D. H. Lee
Affiliation:
Biological Sciences Group, Chelsea College, Hortensia Road, London, SW1O 0QX
R. J. Miles
Affiliation:
Biological Sciences Group, Chelsea College, Hortensia Road, London, SW1O 0QX
B. F. Perry
Affiliation:
Research and Development Laboratories, Europe Africa Division, Richardson-Vicks Limited, Rusham Park, Whitehall Lane, Egham, Surrey, TW20 9NW, U.K.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of hypochlorite concentration on Mycoplasma mycoides ssp. mycoides viability was tested under a variety of conditions. The experimental variables employed included chlorine-cell contact time, chlorine concentration, carrier system and organic loading. Initial populations of 106 c.f.u./ml were killed (no survivors in 1 ml) by hypoehlorite solution containing 25 p.p.m. available chlorine in 15 s in the absence of organic load and 50 p.p.m. available chlorine in 5 min in the presence of 1% protein. Higher concentrations of hypochlorite were required to disinfect a porous carrier system in the absence or presence of protein. The results are in contrast to previous reports that M. bovis is killed only by high hypochlorito concentrations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Anon. (1980). Chemical Disinfecting Agents in Water and Effluents and Chlorine Demand: Methods for the Examination of Waters and Associated Materials. London: Her Majesty's Stationery Office.Google Scholar
Beck, E. G., Borneff, J., Grun, L., Gundermann, K. O., Kanz, E., Lammeus, Th., Mulhens, K., Primavesi, C. A., Schmidt, B., Schubert, R., Weinhold, E. & Werner, H.-P. (1977). Recommendations for the testing and the evaluation of the efficacy of chemical disinfectant procedures. 1. Testing the efficacy of chemical disinfectant procedures. Zentralblatt fur Bakteriologie, Parasitenkunde, Infeklionskrankheilen und Hygiene (Abteilung 1, Origmale lieihe B) 165, 335380.Google Scholar
Berger, H. & Illingworth, R. S. (ed.) (1971). Infant Hygiene: Applications, Developments and Opportunities for Hygienic Infant Management. Stuttgart: Georg Thieme Verlag.Google Scholar
Bloomfield, S. F. (1973). The bactericidal capacity of sodium dichloroisocyanurate formulations used for the sterilisation of infant feeding bottles and teats. Laboratory Practice 22, 672673.Google Scholar
Cole, B. C. & Ward, J. R. (1970). TheMycoplasmas as arthritogenic agents. In The Mycoplasmas, vol. 2 (ed. Tully, J. G. and Whitcomb, R. F.), pp. 307308. New York: Academic Press.Google Scholar
Cursons, R. T. M., Brown, T. J. & Keys, E. A. (1980). Effect of disinfectants on pathogenic free-living amoebae in axenic conditions. Applied and Environmental Microbiology 40, 6266.CrossRefGoogle ScholarPubMed
De Jonckheere, J. & Van de Voorde, H. (1970). Differences in destruction of cysts of pathogenic and nonpathogenic Naegleria and Acanthamoeba by chlorine. Applied and Environmental Microbiology 31, 204207.Google Scholar
Dychdala, G. R. (1977). Chlorine and chlorine compounds. In Disinfection, Sterilization and Preservation (ed. Block, S. S.), pp. 167195. Philadelphia: Lea and Febiger.Google Scholar
Enoelbrecht, R. S., Weber, M.J., Salter, B. L. & Schmidt, C. A. (1980). Comparative inactivation of viruses by chlorine. Applied and Environmental Microbiology 40, 240250.Google Scholar
Ferguson, W. F. & Gibson, G. L. (1971). Processing of feeding bottles and teats using stabilised hypochlorite solution. In Infant Hygiene: Applications, Developments and Opportunities for Hygienic Infant Management (ed. Berger, H. and Illingworth, R. S.), pp. 108117. Stuttgart: Georg Thiemo Verlag.Google Scholar
Foegeding, P. M. (1983). Bacterial spore resistance to chlorine compounds. Food Technology (Chicago) 37, 100104.Google Scholar
Gourlay, R. N. & Howard, C. J. (1979). Bovine mycoplasmas. In The Mycoplasmas, vol. 2 (ed. Tully, J. G. and Whitcomb, R. F.), pp. 50102. New York: Academic Press.Google Scholar
Haas, C. N. & Engelbrecht, R. S. (1980). Chlorine dynamics during inaetivation of coliforms, acid-fast bacteria and yeasts. Water Research 14, 17491757.CrossRefGoogle Scholar
Harakeh, M. & Butler, M. (1984). Inactivation of human rotavirus, SA 11 and other enteric viruses in effluent by disinfectants. Journal of Hygiene 93, 157163.CrossRefGoogle Scholar
Heicken, K. (1950). Uber die Desinfektion infektioser Abwasser. Zenlralblatt für Bakteriologie, Parasilenkunde, Infeklionskrankheilen und Hygiene (Ableilung 1, Originate Reihe B) 165, 156197.Google Scholar
Jasper, D. E., Dellinger, J. D. & Hakanson, H. D. (1970). Effectiveness of certain teat dips and sanitizcrs in vitro and on teat skin against Mycoplasma agalacliae subsp. bovis. Cornell Veterinarian 66, 164171.Google Scholar
Kelly, S. & Sanderson, W. W. (1958). The effect of chlorine in water on enteric viruses. American Journal of Public Health 48, 13231334.CrossRefGoogle Scholar
Kott, Y. (1969). Effects of halogens on algae. Water Research 3, 251257.CrossRefGoogle Scholar
Mårdh, P.-A. (1983). Mycoplasma hominis – a neglected human pathogen. European Journal of Clinical Microbiology 2, 303308.CrossRefGoogle ScholarPubMed
Morris, G., Kingsley, N. G. & Chinwah, P. (1980). The stability of diluted hypochlorite solution. Australian Journal of Hospital Pharmacy 10, 116117.Google Scholar
Pfutzner, H., Scherwa, B. & Trubner, S. (1983). Empfindlichkeit von Mycoplasma bovis gegenuber im Euterbereich eingesetzten Desinfektionsmitteln. Archiv für Experimentelle Veterinärmedizin (Leipzig) 37, S. 485489.Google Scholar
Phillips, I. (1960). The action of hypochlorite on dried organisms. British Hospital Journal and Social Service Review, 20 May.Google Scholar
Postgate, J. R. (1969). Viable counts and viability. In Methods in Microbiology (ed. Norris, J. R. and Ribbons, D. W.), vol. 1, pp. 611628. London and New York: Academic Press.Google Scholar
Raunio, V. & Wasz-Höckert, O. (1971). Chemical sterilization of feeding utensils of the infant. In Infant Hygiene: Applications, Developments and Opportunities for Hygienic Infant Management (ed. Berger, H. and Ulingworth, R. S.), pp. 123129. Stuttgart: Georg Thieme Verlag.Google Scholar
Rosenzweig, W. D., Minnigh, H. A. & Pires, W. O. (1983). Chlorine demand and inactivation of fungal propagules. Applied and Environmental Microbiology 45, 182186.CrossRefGoogle ScholarPubMed
Scarpino, P. V., Berg, G., Chano, S. L., Dahling, D. & Lucas, M. (1972). A comparative study of the inactivation of viruses in water by chlorine. Water Research 6, 959965.CrossRefGoogle Scholar
Shaffer, C. H. (1977). Methods of testing sanitizers and bacteriostatic substances. In Disinfection, Sterilization and Preservation (ed. Block, S. S.), pp. 7899. Philadelphia: Lea and Febiger.Google Scholar
Stedman, R. L., Kravitz, E. & Bell, H. (1954 a). Studies on the efficiencies of disinfectants for use on inanimate objects. 1. Relative activities on a stainless steel surface using a new performance test method. Applied Microbiology 2, 119124.CrossRefGoogle Scholar
Stedman, R. L., Kravitz, E. & Bell, H. (1954 b). Studies on the efficiencies of disinfectants for use on inanimate objects. 2. Relative activities on porous surfaces. Applied Microbiology 2, 322325.CrossRefGoogle Scholar
Tan, J. A. & Schnagl, R. D. (1983). Rotavirus inactivated by a hypochlorite-based disinfectant. A reappraisal. Medical Journal of Australia 3, 550.CrossRefGoogle Scholar
Taylor-Robinson, D. & McCormack, W. M. (1970). Mycoplasmas in human genitourinary infections. In The Mycoplasmas, vol. 2 (ed. Tully, J. G. and Whitcomb, R. F.), pp. 308366. New York: Academic Press.Google Scholar
Tonney, F. O., Greek, F. E. & Danforth, T. F. (1928). The minimal chlorine death points of bacteria. 1. Vegetative forms. American Journal of Public Health 18, 12591263.CrossRefGoogle Scholar
Tonney, F. O., Greek, F. E. & Liebig, G. F. Jr (1930). The minimal chlorine death points of bacteria. 2: Vegetative forms. 3: Spore-bearing organisms. American Journal of Public Health 20, 503508.CrossRefGoogle Scholar
Tully, J. G. & Whitcomb, R. F. (ed.) (1979). The Mycoplasmas, vol. 2. New York: Academic Press.Google Scholar
Van der Goot, H. & Pijper, P. J. (1984). Mycoplasmas – stubborn survivors? Trends in Pharmaceutical Sciences 5, 3537.Google Scholar
Witzleb, H. & Enghardt, S. (1983). Antiseptikawirkung auf Ureaplasmen und Mykoplasmen. Archiv filr Experimentelle Veterinarmedizin (Leipzig) 37, S. 481483.Google Scholar