Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T17:39:58.560Z Has data issue: false hasContentIssue false

The Micro-Determination of Residual Moisture in Freeze-Dried Biological Materials

Published online by Cambridge University Press:  15 May 2009

P. R. W. Baker
Affiliation:
Chemical Division, The Wellcome Research Laboratories, Beckenham, Kent
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A micro-drying method is described, which is simple, rapid and reproducible. It has been shown to give results in reasonable agreement with the Karl Fischer method, and with the vapour-pressure method. The results on samples of low moisture content are, however, considerably higher than those by the so-called American standard method. The method has been in routine use for over 3 years.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1955

References

Beckett, L. G. (1951). In Freezing and Drying, Harris, R. J. C., ed., p. 160. London: The Institute of Biology.Google Scholar
Beckett, L. G. (1954). In Biological Applications of Freezing and Drying, Harris, R. J. C., ed., p. 285. New York: Academic Press, Inc.Google Scholar
Bennett, A. & Hudson, J. R. (1954). J. Inst. Brew. 60, 35.CrossRefGoogle Scholar
Edwards, W. & Co. (London) Ltd. (1954).Personal communication.Google Scholar
Fischer, K. (1935). Angew. Chem. 48, 394.CrossRefGoogle Scholar
Flosdorf, E. W. (1949). Freeze-Drying, New York: Reinhold Publishing Corp.Google Scholar
Flosdorf, E. W. & Webster, G. W. (1937). J. biol. Chem. 121, 353.CrossRefGoogle Scholar
Foulk, C. W. & Bawden, A. T. (1926). J. Amer. chem. Soc. 48, 2045.CrossRefGoogle Scholar
Gardiner, S. D. & Farmiloe, F. J. (1954). Analyst, 79, 447.CrossRefGoogle Scholar
Hilleman, M. R., Buescher, E. L. & Smadel, J. E. (1951). U.S. Publ. Health Rep. 66, 1195.CrossRefGoogle Scholar
Hutton, R. S., Hilmoe, R. J. & Roberts, J. L. (1951). J. Bact. 61, 309.CrossRefGoogle Scholar
Levy, G. B., Murtaugh, J. J. & Rosenblatt, M. (1945).Industr. Engng Chem. (Anal. edn.), 17, 193.CrossRefGoogle Scholar
McComb, E. A. (1948). Anal. Chem. 20, 1219.CrossRefGoogle Scholar
Makower, B. & Myers, S. (1943). Proc. Inst. Food Tech. 156.Google Scholar
Porter, W. L. & Willits, C. O. (1944). J. Assoc. off. agric. Chem. 27, 179.Google Scholar
Pregl, F. (1945). Quantitative Organic Micro-Analysis, 4th English ed., p. 19. London:J. and A. Churchill, Ltd.Google Scholar
Riddick, J. A., Toops, E. E., Wiemann, R. L. & Cundiff, R. M. (1954). Anal. Chem. 26, 1149.CrossRefGoogle Scholar
Sager, H. (1952). Pharm. Acta Helvet. 27, 121.Google Scholar
Schroeder, C. W. & Nair, J. H., (1948). Anal. Chem. 20, 452.CrossRefGoogle Scholar
Sobel, H. (1953). Anal. Chem. 25, 1756.CrossRefGoogle Scholar
Thomann, J. & Kaelin, A. (1938). Pharm. Acta Helvet. 13, 23.Google Scholar
Vincent, R. S. & Simons, A. (1940). Proc. phys. Soc. 52, 489.CrossRefGoogle Scholar
Waber, J. T. & Sturdy, G. E. (1954). Anal. Chem. 26, 1177.CrossRefGoogle Scholar
Wiberley, J. S. (1951). Anal. Chem. 23, 656.CrossRefGoogle Scholar