Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T10:49:51.976Z Has data issue: false hasContentIssue false

Mercury resistance and tetracycline resistance in Staphylococcus aureus

Published online by Cambridge University Press:  15 May 2009

R. Fraser Williams
Affiliation:
Department of Medical Microbiology, St Thomas's Hospital Medical School, London, S.E. 1
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Minimum inhibitory concentrations of tetracycline to 256 tetracycline-resistant strains of Staphylococcus aureus were determined. M.I.C.'s tetracycline were appreciably higher among mercury resistant than among mercury sensitive strains.

Mercury resistant strains representing various M.I.C.'s tetracycline grew significantly better in peptone water containing a therapeutic concentration of tetracycline than mercury sensitive strains representing the same range of resistance. The experiment was repeated after both groups had been adapted—or ‘trained’—to grow on agar containing tetracycline, 100µg./ml. The mercury sensitive strains now grew better than the mercury resistant group.

The significance of these findings is discussed. It is concluded that tetracycline resistance is more stable and efficient in mercury resistant strains, and that it is probably genetic in origin—the result of mutation and selection. Tetracycline resistance in mercury sensitive strains is possibly the result of ‘training’.

The associations and significance of both mercury resistance and tetracycline resistance in Staphylococcus aureus are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

References

REFERENCES

Asheshov, E. H. (1966). Loss of antibiotic resistance in Staphylococcus aureus resulting from growth at high temperature. J. gen. Microbiol. 42, 403.CrossRefGoogle ScholarPubMed
Barber, M., Dutton, A. A. C., Beard, M. A., Elmes, P. C. & Williams, R. (1960). Reversal of antibiotic resistance in hospital staphylococcal infection. Br. med. J. i, 11.CrossRefGoogle Scholar
Barber, M. & Garrod, L. P. (1963). In Antibiotic and Chemotherapy, Edinburgh & London. E. & S. Livingstone Ltd.Google Scholar
Blair, J. E. & Williams, R. E. O. (1961). Phage typing of staphylococci. Bull. Wld Hlth Org. 24, 771.Google ScholarPubMed
Clarke, S. K. R., Dalgleish, P. G. & Gillespie, W. A. (1952). Hospital cross-infections with staphylococci resistant to several antibiotics. Lancet ii, 1132.CrossRefGoogle Scholar
Collins, A. M. & Mcdonald, S. (1962). Transduction of tetracycline resistance in staphylococci. J. Path. Bact. 83, 399.CrossRefGoogle ScholarPubMed
Dean, A. C. R. & Giordan, B. L. (1964). The development of resistance to Terramycin by Bact, lactis aerogenes (Aerobacter aerogenes). Proc. R. Soc. B 161, 571.Google Scholar
Dean, A. C. R. & Hinshelwood, Sir Cyril (1966). In Growth, Function and Regulation in Bacterial Cells. Oxford: Clarendon Press.Google Scholar
Drabble, W. T. & Hinshelwood, Sir Cyril (1961). Development of resistance to streptomycin by Bact. lactis aerogenes (Aerobacter aerogenes). I. The role of mutation and of physiological adaptation. Proc. R. Soc. B, 154, 449.Google ScholarPubMed
Finney, D. J., Hazlewood, T. & Smith, M. J. (1955). Logarithms to base 2. J. gen. Microbiol. 12, 222.CrossRefGoogle ScholarPubMed
Green, S. M. (1962). Mercury sensitivity of staphylococci. J. clin. Path. 15, 249.CrossRefGoogle ScholarPubMed
Jessen, O., Rosendal, K., Faber, V., Hove, K. & Eriksen, K. R. (1963). Some properties of Staphylococcus aureus possibly related to pathogenicity. III. Bacteriological investigations of Staphylococcus aureus strains from 462 cases of bacteraemia. Acta path. microbiol. scand. 58, 85.CrossRefGoogle Scholar
Lowbury, E. J. L., Topley, E. & Hood, A. M. (1952). Chemotherapy for Staphylococcus aureus in burns. Lancet i, 1036.CrossRefGoogle Scholar
May, J. W., Houghton, R. H. & Perret, C. J. (1964). The effect of growth at elevated temperatures on some heritable properties of Staphylococcus aureus. J. gen. Microbiol. 37, 157.CrossRefGoogle ScholarPubMed
Mcdonald, S. (1966). Transduction of antibiotic resistance in Staphylococcus aureus. Lancet ii, 1107.CrossRefGoogle Scholar
Miles, A. A., & Misra, S. S. (1938). The estimation of the bactericidal power of the blood. J. Hyg., Camb. 38, 732.Google ScholarPubMed
Mitsuhashi, S., Nakano, T., Fukutome, Y. & Kakinuma, Y. (1961). Drug-resistance of staphylococci. I. Transduction of drug-resistance in Staphylococcus aureus. Gunma J. med. Sci. 10, 297.Google Scholar
Mitsuhashi, S., Oshima, H., Kawaharada, V. & Hashimoto, H. (1965). Transduction of tetracycline resistance with phage lysates obtained from multiply resistant staphylococci. J. Bact. 89, 967.CrossRefGoogle ScholarPubMed
Monod, J. (1949). The growth of bacterial cultures. A. Rev. Microbiol. 3, 371.CrossRefGoogle Scholar
Moore, B. (1960). A new screen test and selective medium for the rapid detection of epidemic strains of Staph. aureus. Lancet ii, 453.CrossRefGoogle Scholar
Parker, M. T. & Jevons, M. P. (1963). In Infection in Hospitals. Oxford: Blackwell Scientific Publications.Google Scholar
Pattee, P. A. & Baldwin, J. N. (1961.) Transduction of resistance to chlortetracycline and novobiocin in Staphylococcus aureus. J. Bact. 82, 875.CrossRefGoogle ScholarPubMed
Penfold, W. J. (1910). Variation and mutation in intestinal bacteria. J. Path. Bact. 14, 406.Google Scholar
Richmond, M. H. & John, M. (1964). Co-transduction by a staphylococcal phage of the genes responsible for penicillinase synthesis and resistance to mercury salts. Nature, Lond. 202, 1360.CrossRefGoogle ScholarPubMed
Richmond, M. H., Parker, M. T., Jevons, M. P. & John, M. (1964). High penicillinase production correlated with multiple antibiotic resistance in Staphylococcus aureus. Lancet i, 293.CrossRefGoogle Scholar
Rountree, P. M. (1963). The effect of desiccation on the viability of Staphylococcus aureus. J. Hyg., Camb. 61, 265.CrossRefGoogle ScholarPubMed
Rountree, P. M. & Thomson, E. F. (1952). Incidence of antibiotic-resistant staphylococci in a hospital. Lancet ii, 262.CrossRefGoogle Scholar
Shooter, R. A., Smith, M. A., Griffiths, J. D., Brown, M. E. A., Williams, R. E. O., Rippon, J. E. & Jevons, M. P. (1958). Spread of staphylococci in a surgical ward. Br. med. J. i, 607.CrossRefGoogle Scholar
Turner, G. C. & Willis, A. T. (1962). Staphylococcal invasion of a new surgical ward. J. Path. Bact. 84, 349.CrossRefGoogle ScholarPubMed
Vogelsang, Th. M. (1965). Mercury resistance of Staphylococcus aureus. Pathologia Microbiol. 28, 608.Google ScholarPubMed
Williams, R. E. O. (1959). Epidemic staphyloeocci. Lancet i, 190.CrossRefGoogle Scholar
Willis, A. T., Jacobs, S. I. & Goodburn, G. M. (1964). Pigment production, enzymatic activity and antibiotic sensitivity of staphylococci: subdivision of the pathogenic group. J. Path. Bact. 87, 157.CrossRefGoogle ScholarPubMed
Willis, A. T. & Turner, G. C. (1963). Staphylococci in the hospital environment. J. Path. Bact. 85, 395.CrossRefGoogle ScholarPubMed