Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T16:43:41.492Z Has data issue: false hasContentIssue false

Measles in developing countries Part I. Epidemiological parameters and patterns

Published online by Cambridge University Press:  19 October 2009

A. R. McLean
Affiliation:
Parasite Epidemiology Research Group, Department of Pure and Applied Biology, Imperial College, London University, London SW7 2BB
R. M. Anderson
Affiliation:
Parasite Epidemiology Research Group, Department of Pure and Applied Biology, Imperial College, London University, London SW7 2BB
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents a review of published data concerning the epidemiology of measles in developing countries. Simple mathematical models provide a framework for data analysis and interpretation. The analyses highlight differences and similarities in the patterns of transmission of the measles virus in developed and developing countries. Whilst the rate of loss of maternally derived immunity to measles is broadly similar, the average age at infection is much lower, and case fatality rates are much higher in developing countries. Data analysis also serves to illustrate inter-relationships between different kinds of epidemiological data. Thus, for example, in order to correctly interpret an age stratified serological profile from a developing country it is necessary to have information on the rate of decay of maternal antibodies and age specific case fatality rates. To determine the probable impact of a given vaccination programme, information on the birth rate in the community concerned is also required. A discussion is given of the epidemiological data required in order to effectively design a community based vaccination programme aimed at the eradication of measles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

REFERENCES

Aaby, P., Bukh, J., Lisse, I. A. & Smits, A. J. (1983 a). High case fatality rates in twins with measles. Lancet ii, 690.CrossRefGoogle Scholar
Aaby, P., Bukh, J., Lisse, I. A. & Smits, A. J. (1983 b). Measles mortality, state of nutrition, and family structure: A community study from Guinea-Bissau. Journal of Infectious Diseases 147, 693701.CrossRefGoogle ScholarPubMed
Aaby, P., Bukh, J., Lisse, I. A. & Smits, A. J. (1983 c). Spacing crowding and child mortality in Guinea-Bissau. Lancet ii, 101.Google Scholar
Aaby, P., Bukh, J., Lisse, I. A. & Smits, A. J. (1984 a). Measles vaccination and reduction in child mortality: a community study from Guinea-Bissau. Journal of Infection 8, 1321.CrossRefGoogle ScholarPubMed
Aaby, P., Bukh, J., Lisse, I. A. & Smits, A. J. (1984 b). Determinants of measles mortality in a rural area of Guinea-Bissau: crowding, age, and malnutrition. Journal of Tropical Pediatrics 30, 164168.CrossRefGoogle Scholar
Aaby, P., Bukh, J., Lisse, I. A. & Smits, A. J. (1984 c) Overcrowding and extensive exposure as determinants of measles mortality. American Journal of Epidemiology 120, 4963.CrossRefGoogle Scholar
Abdurrahman, M. B., Greenwood, B. M., Olafimihan, O. & Whittle, H. C. (1982). Measles antibody levels from birth to 9 months of age in Nigerian infants. African Journal of Medical Science 11, 113115.Google ScholarPubMed
Albrecht, P., Ennis, F. A., Saltzmann, E. J. & Krugmann, S. (1977). Persistence of maternal antibody in infants beyond 12 months. Mechanisms of measles vaccine failure. Journal of Pediatrics 91, 715718.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1982). Directly transmitted infectious diseases: control by vaccination. Science 215, 10531060.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1983). Vaccination against rubella and measles: quantitative investigations of different policies. Journal of Hygiene 90, 259325.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1985 a). Age related changes in the rate of disease transmission: implications for the design of vaccination programmes. Journal of Hygiene 94, 365436.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1985 b). Vaccination and herd immunity to infectious diseases. Nature 318, 323329.CrossRefGoogle ScholarPubMed
Bhaskaram, P., Radhakrishna, K. V. & Madhusudan, J. (1986). Seroepidemiological study to determine age for measles vaccination. Indian Journal of Medical Research 83, 480–486.Google ScholarPubMed
Black, F. L. (1959). Measles antibodies in the population of New Haven Connecticut. Journal of Immunology 83, 7483.CrossRefGoogle ScholarPubMed
Boue, A. (1964). Contribution a l'etude sérologique de l'épidémiologie de la rougeole au Sénégal. Bulletin de la Société Médicale d'Afrique Noire 9, 253254.Google Scholar
Burrowes, J. & Cruickshank, J. G. (1976). At what age should measles vaccine be given? Report of a small trial in Bulawayo. Central African Journal of Medicine 22, 4547.Google ScholarPubMed
E.P.I. (1980). Epidemiology of measles in a rural community. Weekly Epidemic Record 55, 8587.Google Scholar
E.P.I. (1981). Measles in Tanzania. Weekly Epidemic Record 56, 234237.Google Scholar
E.P.I. (1986). E.P.I. Global Advisory Group. Weekly Epidemic Record 61. 1316.Google Scholar
Fox, J. P., Elveback, L., Scott, W., Gatewood, L. & Ackerman, E. (1971). Herd immunity: basic concept and relevance to public health immunization practice. American Journal of Epidemiology 94, 179189.CrossRefGoogle Scholar
Garai, R. & Chakraborty, A. K. (1980). Measles in a rural community. Indian Journal of Public Health 24, 150153.Google Scholar
Golubjatnikov, R., Elsea, W. R. & Lepplav, L. (1971). Measles and rubella haemagglutination–inhibition patterns in Mexican and Paraguayan children. American Journal of Tropical Medicine and Hygiene 20, 958963.CrossRefGoogle ScholarPubMed
Gordon, J. E., Jansen, A. A. J. & Ascoli, W. (1965). Measles in rural Guatemala. Tropical Pediatrics 66, 779786.Google ScholarPubMed
Griffiths, D. A. (1974). A catalytic model of infection of measles. Applied Statistics 3, 330339.CrossRefGoogle Scholar
Grenfell, B. T. & Anderson, R. M. (1985). The estimation of age-related rates of infection from case notifications and serological data. Journal of Hygiene 95, 419436.CrossRefGoogle ScholarPubMed
Halsey, N. A. (1983). The Optimal Age for Administering Measles Vaccine in Developing Countries. Pan American Health Organization. Scientific Publication No. 451.Google Scholar
Harry, T.O. & Ogunmekan, D. A. (1981). Optimal age for vaccinating Nigerian children against measles. I. Neonatal antibody profile and subsequent susceptibility to measles. Tropical and Geographical Medicine 33, 375378.Google ScholarPubMed
Heymann, D. L., Kesseng Mayben, G., Murphy, K. R., Guyer, B. & Foster, S. O. (1983). Measles control in Yaounde: justification of a one dose, nine month minimum age vaccination policy in tropical Africa. Lancet ii, 14701471.CrossRefGoogle Scholar
Hull, H. F., Williams, P. J. & Odfield, F. (1983). Measles mortality and vaccine efficacy in rural West Africa. Lancet i, 972975.CrossRefGoogle Scholar
John, T. J., Joseph, A., George, T. I., Radhakrishnan, J., Singh, R. P. D. & George, K. (1980). Epidemiology and prevention of measles in rural south India. Indian Journal of Medical Research 72, 153158.Google ScholarPubMed
Kasongo Project Team (1981). Influence of measles vaccination on survival pattern of 7–35 month old children in Kasongo Zaire. Lancet i, 764.Google Scholar
Krugman, S., Giles, J. P., Fridman, H. & Stones, S. (1965). Studies on immunity to measles. Journal of Pediatrics 66, 471488.CrossRefGoogle ScholarPubMed
Krugman, S. & Katz, S. L. (1981). Infectious Diseases of Children. St Louis: C. B. Mosby.Google Scholar
Macdonald, G. (1952). The analysis of equilibrium in malaria. Tropical Diseases Bulletin 49, 813829.Google ScholarPubMed
May, R. M. & Anderson, R. M. (1984). Spatial heterogeneity and the design of vaccination programs. Mathematical Biosciences 72, 83111.CrossRefGoogle Scholar
Miller, D. L. (1964). Frequency of complications of measles, 1963. British Medical Journal 2, 7578.CrossRefGoogle ScholarPubMed
Ministry of Health of Kenya and World Health Organization (1977). Measles immunity in the first year after birth and the optimum age for vaccination in Kenyan children. Bulletin of the W.H.O. 55, 2130.Google Scholar
Morley, D. (1969 a). Severe measles in the tropics I. British Medical Journal 1, 297300.CrossRefGoogle ScholarPubMed
Morley, D. (1969 b). Severe measles in the tropics II. British Medical Journal I, 363365.CrossRefGoogle Scholar
Morley, D., Woodland, M. & Martin, W. J. (1963). Measles in Nigerian children. Journal of Hygiene 61, 115135.CrossRefGoogle ScholarPubMed
Muller, A. S., Voorhoeve, A. M., Mannetje, W. 'T & Schulpen, T. W. J. (1977). The impact of measles in a rural area of Kenya. East African Medical Journal 54, 364372.Google Scholar
Sabin, A. B., Arechiga, A. F., De Castro, J. F., Sever, J. L.Madden, D. L., Shekarchi, I. & Albrecht, P. (1983). Successful immunization of children with and without maternal antibody by aerolized measles vaccine. Journal of the American Medical Association 249, 26512662.CrossRefGoogle Scholar
Ueda, S., Okuno, Y., Sangkawiba, N., Jayavasu, J., Tuchinda, D., Bukkavesa, S., Ketusingha, R. & Mansuwan, P. (1967). Studies on measles in Thailand, I. Seroepidemiological examination. Biken Journal 10, 129133.Google ScholarPubMed
Walsh, J. A. (1983). Selective primary health care: strategies for control of disease in the developing world. IV. Measles. Reviews of Infectious Diseases 5, 330340.CrossRefGoogle ScholarPubMed
Walsh, J. A. & Warren, K. S. (1979). Selective primary health care: an interim strategy for disease control in developing countries. New England Journal of Medicine 301, 967974.CrossRefGoogle ScholarPubMed