Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T14:55:34.246Z Has data issue: false hasContentIssue false

Investigations on the role of flagella in the colonization of infant mice with Campylobacter jejuni and attachment of Campylobacter jejuni to human epithelial cell lines

Published online by Cambridge University Press:  19 October 2009

Diane G. Newell
Affiliation:
Public Health Laboratory, Southampton General Hospital, Southampton, S09 4XY
Harold McBride
Affiliation:
Public Health Laboratory, Southampton General Hospital, Southampton, S09 4XY
Jean M. Dolby
Affiliation:
Clinical Research Centre, Division of Communicable Diseases, Harrow, Middlesex HA1 3UJ
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The biochemical and biological properties of the flagella of Campylobacter jejuni have been investigated using two variants selected from a flagellate, motile clinical isolate (strain 81116): a flagellate, non-motile variant (SF-1) and an aflagellate variant (SF-2). Phenotypic and biochemical analysis of the strains and amino acid analysis of the isolated flagella suggest that the variants differed from the wild-type strain only in the absence of flagella and/or motility. The aflagellato variant poorly colonized the gastrointestinal tract of infant mice but the flagellate, non-motile variant colonized the mice as successfully as the wild-type strain.35S-labelled organisms were used to investigate the attachment of the variants to human epithelial cell monolayers in vitro. The flagellate, non-motile strain attached more efficiently to the cells than the wild-type strain or the aflagellate strain. Differences in attachment suggest that an adhesin is intimately associated with flagella of C jejuniand that active flagella mediate only a tenuous association with host cells. This adhesin attached most efficiently to cells of intestinal epithelial origin and was not specifically inhibited by various sugars.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

REFERENCES

Attridge, S. R. & Rowley, D. (1983). The role of the flagellum in the adherence of Vibrio cholerae. Journal of Infectious Diseases 147, 804872.CrossRefGoogle ScholarPubMed
Butzler, J. P. & Skirrow, M. M. B. (1979). Campylobacter enteritis. Clinies in Gastroenterology 8, 737765.CrossRefGoogle ScholarPubMed
Curry, A., Fox, A. J. & Jones, D. M. (1984). A new bacterial flagellar structure found in Campylobacters, Journal of General Microbiology 130, 13071310.Google ScholarPubMed
Dijs, F. & De Graaf, F. K. (1982). In search of adhesive antigens on Campylobacler jejuni. In Campylobacter Epidemiology, Pathogenesis and Biochemistry (ed. Newell, D. G.), pp. 243245. Lancaster: M.T.P. Press.Google Scholar
Freter, R. & Jones, G. W. (1970). Adhesive properties of Vibrio cholerae: nature of the interaction with intact mucosal surfaces. Infection and Immunity 14, 246256.CrossRefGoogle Scholar
Field, L. M., Underwood, J. L., Pope, L. M. & Berry, L. J. (1981). Intestinal colonization of neonatal animals by Campylobacter fetus suhap. jejuni. Infection and Immunity 33, 884892.CrossRefGoogle ScholarPubMed
Giannella, R. A. (1981). Pathogenesis of acute bacterial diarrhoeal disorders. Annual Reviews of Microbiology 32, 341357.Google Scholar
Guentzel, M. N. & Berry, L. J. (1975). Motility as a virulence factor for Vibrio cholerae. Infection and Immunity 11, 890897.CrossRefGoogle ScholarPubMed
Henle, G. & Deinhardt, F. (1957). The establishment of strains of human cells in tissue culture. Journal of Immunology 79, 5459.CrossRefGoogle ScholarPubMed
Jones, G. W. & Freter, R. (1976). Adhesive properties of Vibrio cholerae; nature of the interaction with isolated rabbit brush border membranes and human erythrocytes. Infection and Immunity 14, 240245.CrossRefGoogle ScholarPubMed
Lior, H., Woodward, D. L., Edgar, J. A., Laroche, L. J. & Gill, P. (1982). Serotyping of Campylobacter jejuni by slide agglutination based on heat-labile antigenic factors. Journal of Clinical Microbiology 15 761768.CrossRefGoogle ScholarPubMed
Manninen, K. I., Prescott, J. F. & Dohoo, I. R. (1982). Pathogenicity of Campylobacter jejuni isolates from animals and humans. Infection and Immunity 38, 4652.CrossRefGoogle Scholar
Maruyama, M., Lodderstaedt, G. & Sohmitt, R. (1978). Purification and biochemical properties of complex flngella isolated from Rhizobium lupini H13·3. Biochimica Biophysica Acta 535, 110124.CrossRefGoogle ScholarPubMed
Newell, D. G. (1983). The surface protein antigens, including flagella of Campylobacter jejuni. In Campylobacter II (ed. Pearson, A. D., Skirrow, M. M. B., Rowe, B., Davies, J. R. and Jones, D. M.), p. 66. London: PHLS.Google Scholar
Newell, D. G., McBride, H. & Pearson, A. D. (1984). The identification of outer membrane proteins and flagella of Campylobacter jejuni. Journal of General Microbiology 130, 12011208.Google ScholarPubMed
Newell, D. G. & Pearson, A. D. (1984). The invasion of epithelial cell lines and the intestinal epithelium of infant mice by Campylobacter jejuni/coli. Journal of Diarrhoeal Disease Research 2, 1920.Google ScholarPubMed
Newell, D. G., McBride, H., Saunders, F., Dehele, Y. & Pearson, A. D.). (1985). The virulence of clinical and environmental isolates of Campylobacter jejuni. Journal of Hygiene 94, 4554.CrossRefGoogle ScholarPubMed
Penke, B., Ferenczi, R. & Kovacs, K. (1974). A new acid hydrolysis method for determining tryptophan in peptides and proteins. Analytical Biochemistry 60, 4550.CrossRefGoogle ScholarPubMed
Penner, J. L. & Hennessy, J. N. (1980). Passive hacmagglutination technique for serotyping Campylobacler fetus subspecies jejuni on the basis of soluble heat-stable antigens. Journal of Clinical Microbiology 12, 732737.CrossRefGoogle Scholar
Skirrow, M. M. B. (1977). Campylobacter enteritis-a ‘new’ disease. British Medical Journal ii, 911.CrossRefGoogle Scholar
Skirrow, M. M. B. (1982). Campylobacter enteritis-the first five years. Journal of Hygiene 89, 175184.CrossRefGoogle Scholar
Skirrow, M. M. B. & Benjamin, J. (1980). Differentiation of enteropathogenic Campylobactera. Journal of Clinical Pathology 33, 1122.CrossRefGoogle Scholar
Smith, J. D., Freeman, G., Voor, M. & Duldecco, R. (1960). The nucleic acid of polyoma virus. Virology 12, 185190.CrossRefGoogle Scholar
Yanoy, R. J., Willis, D. L. & Berry, L. J. (1978). Role of motility in experimental cholera in adult rabbits. Infection and Immunity 22, 387392.Google Scholar
Yanoy, R. J., Willis, D. L. & Berry, L. J. (1970). Flagella-induced immunity against experimental cholera in adult rabbits. Infection and Immunity 25, 220228.Google Scholar
Watt, J. P. (1980). Adhesive properties of bacteria virulent to man. In Cell Adhesion and Motility (ed. Curtis, A. S. G. & Pitts, J. D.), pp. 137169. Cambridge: Cambridge University Press.Google Scholar
Wenman, W. M., Chai, J., Louie, T. J., Goudreau, C., Lior, H., Newell, P. G., Pearson, A. D. & Taylor, D. E. (1985). Antigenic analysis of campylobacter flagella protein and other proteins. Journal of Clinical Microbiology 21, 108112.CrossRefGoogle ScholarPubMed