Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T15:08:24.656Z Has data issue: false hasContentIssue false

Interrelationships between strains of Salmonella enteritidis

Published online by Cambridge University Press:  15 May 2009

E. J. Threlfall
Affiliation:
Laboratory of Enteric Pathogens, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT
H. Chart
Affiliation:
Laboratory of Enteric Pathogens, Central Public Health Laboratory, 61 Colindale Avenue, London NW9 5HT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Special Article
Copyright
Copyright © Cambridge University Press 1993

References

1. Anonymous. PHLS-SVS: update on salmonella infection. Public Health Laboratory Service-State Veterinary Service, 1992: 10.Google Scholar
2.Humphrey, TJ, Mead, GC, Rowe, B. Poultry meat as a source of human salmonellosis in England and Wales. Epidemiol Infect 1988; 100: 175–84.CrossRefGoogle ScholarPubMed
3.Coyle, EF, Palmer, SR, Ribeiro, CD, et al. Salmonella enteritidis phage type 4: association with hens' eggs. Lancet 1988; ii: 1295–7.CrossRefGoogle Scholar
4. Anonymous. The microbiological safety of food, Pt 1. London: HMSO, 1990.Google Scholar
5.Hickmann-Brenner, FW, Stubbs, AD, Farmer, JJ III. Phage typing of Salmonella enteritidis in the United States. J Clin Microbiol 1991; 29: 2817–23.CrossRefGoogle Scholar
6.Threlfall, EJ, Chart, H, Ward, LR, de Sa, JDH, Rowe, B. Interrelationships between strains of Salmonella enteritidis belonging to phage types 4, 7, 7a, 8, 13, 13a, 23, 24 and 30. J Appl Bacteriol 1993. In press.CrossRefGoogle Scholar
7.Threlfall, EJ, Frost, JA. The identification, typing and fingerprinting of Salmonella: laboratory aspects and epidemiological applications. J Appl Bacteriol 1990; 68: 516.CrossRefGoogle ScholarPubMed
8.Ward, LR, de Sa, JDH, Rowe, B. A phage-typing scheme for Salmonella enteritidis. Epidemiol Infect, 1987; 99: 291304.CrossRefGoogle ScholarPubMed
9.Chart, H, Ward, LR, Rowe, B. Expression of lipopolysaccharide by phage types of Salmonella enteritidis. Lett Appl Microbiol 1991; 13: 3941.CrossRefGoogle Scholar
10.Chart, H, Threlfall, EJ, Ward, LR, Rowe, B. Unusual expression of lipopolysaccharide by strains of Salmonella enteritidis phage type 30. Lett Appl Microbiol 1993; 16: 8790.CrossRefGoogle Scholar
11.Threlfall, EJ, Hall, MLM, Rowe, B. Salmonella gold-coast from outbreaks of food poisoning in the British Isles can be differentiated by plasmid profiles. J Hyg 1986; 97: 115–22.CrossRefGoogle ScholarPubMed
12.Threlfall, EJ, Hall, MLM, Ward, LR, Rowe, B. Plasmid profiles demonstrate that an upsurge in Salmonella berta in humans in England and Wales is associated with imported poultry meat. Eur J Epidemiol 1992; 8: 2733.CrossRefGoogle ScholarPubMed
13.Threlfall, EJ, Frost, JA, Ward, LR, Rowe, B. Plasmid profile typing can be used to subdivide phage-type 49 of Salmonella typhimurium in outbreak investigations. Epidemiol Infect 1990; 104: 243–51.CrossRefGoogle ScholarPubMed
14.Threlfall, EJ, Ward, LR, Rowe, B. Subdivision of Salmonella enteritidis by plasmid profile typing. Epidemiol Infect 1989; 102: 459–65.CrossRefGoogle ScholarPubMed
15.Platt, DJ, Chesham, JS, Brown, DJ, Kraft, CA, Taggart, J. Restriction enzyme finger-printing of enterobacterial plasmids: a simple strategy with wide application. J Hyg 1986; 97: 205–10.CrossRefGoogle Scholar
16.Brown, DJ, Threlfall, EJ, Hampton, MD, Rowe, B. Molecular characterization of plasmids in Salmonella enteritidis phage types. Epidemiol Infect 1993; 110: 209–16.CrossRefGoogle ScholarPubMed
17.Threlfall, EJ, Hall, MLM, Rowe, B. Salmonella bacteraemia in England and Wales, 19811990. J Clin Pathol 1992; 45: 34–6.CrossRefGoogle Scholar
18.Threlfall, EJ, Ward, LR, Rowe, B.. Recent changes in the occurrence of antibiotic resistance in Salmonella isolated in England and Wales. PHLS Microbiol Digest 1992; 9: 6971.Google Scholar
19.Ward, LR, Threlfall, EJ, Rowe, B. Multiple drug resistance in salmonella in England and Wales: a comparision between 1981 and 1988. J Clin Pathol 1990; 43: 563–6.CrossRefGoogle Scholar
20.Frost, JA, Ward, LR, Rowe, B. Acquisition of a drug resistance plasmid converts Salmonella enteritidis phage type 4 to phage type 24. Epidemiol Infect 1989; 103: 243–8.CrossRefGoogle ScholarPubMed
21.Helmuth, R, Stephan, R, Bunge, C, Hoog, B, Steinbeck, A, Bulling, E. Epidemiology of virulence-associated plasmids and outer membrane protein patterns within seven common Salmonella serovars. Infect Immun 1985; 48: 175–82.CrossRefGoogle Scholar
22.Chart, H, Threlfall, EJ, Rowe, B. Virulence of Salmonella enteritidis phage type 4 is related to the possession of a 38 MDa plasmid. FEMS Microbiol Lett 1989; 58: 299304.CrossRefGoogle Scholar
23.Hinton, M, Threlfall, EJ, Rowe, B. The invasiveness of different strains of Salmonella enteritidis phage type 4 for young chickens. FEMS Microbiol Lett 1990; 70: 193–6.Google Scholar
24.Chart, H, Rowe, B. Antibodies to lipopolysaccharide and outer membrane proteins of Salmonella enteritidis PT 4 are not involved in protection from experimental infection. FEMS Microbiol Lett 1991; 84: 345–50.CrossRefGoogle Scholar
25.Popoff, MY, Miras, I, Coynault, CL, Lasselin, C, Pardon, P... Molecular relationships between virulence plasmids of Salmonella serotypes typhimurium and dublin and large plasmids of other Salmonella serotypes. Ann Microbiol (Inst Pasteur) 1984; 135A: 389–98.CrossRefGoogle Scholar
26.Williamson, CM, Baird, GD, Manning, J. A common virulence region on plasmids from eleven serotypes of Salmonella. J Gen Microbiol 1988; 134: 975–82.Google ScholarPubMed
27.Poppe, C, Curtis, R III, Gulig, PA, Gyles, CL. Hybridization studies with a DNA probe derived from the virulence region of the 60 MDAL plasmid of Salmonella typhimurium. Can J Vet Res 1989; 53: 378–84.Google ScholarPubMed
28.Norel, F, Pisano, M-R, Nicoli, J, Popoff, MY. Nucleotide sequence of the plasmid-borne virulence gene mkfA encoding a 28 kDa polypeptide from Salmonella typhimurium. Res Microbiol 1989; 140: 263–5.CrossRefGoogle ScholarPubMed
29.Pullinger, GD, Baird, GD, Williamson, CM, Lax, AJ. Nucleotide sequence of a plasmid gene involved in the virulence of salmonellas. Nuc Acid Res 1989; 17: 7983.CrossRefGoogle ScholarPubMed
30.Matsui, H, Kawahara, K, Terakado, N, Danbara, H. Nucleotide sequence of a gene encoding a 29 kDa polypeptide in the mba region of the virulence plasmid, pKDSC50, of Salmonella cholerae-suis. Nuc Acid Res 1990; 18: 2181–2.CrossRefGoogle Scholar
31.Chart, H, Rowe, B. Iron restriction and the growth of Salmonella enteritidis. Epidemiol Infect 1993; 110: 41–7.CrossRefGoogle ScholarPubMed
32.Chart, H, Rowe, B., Threlfall, EJ, Ward, LR. Conversion of Salmonella enteritidis phage type 4 to phage type 7 involves loss of lipopolysaccharide with a concomitant loss of virulence. FEMS Microbiol Lett 1989; 60: 3740.CrossRefGoogle Scholar
33.Lam, S, Roth, Jr. IS200: a Salmonella-specific insertion sequence. Cell 1983; 34: 951–60.CrossRefGoogle ScholarPubMed
34.Gibert, I, Barge, J, Cadasesus, J. Distribution of insertion sequence IS200 in Salmonella and Shigella. J Gen Microbiol 1990; 136: 2555–60.CrossRefGoogle ScholarPubMed
35.Stanley, J, Jones, CS, Threlfall, EJ. Evolutionary lines among Salmonella enteritidis phage types are identified by insertion sequence IS200 distribution. FEMS Microbiol Lett 1991; 82: 8390.CrossRefGoogle Scholar
36.Stanley, J, Goldsworthy, M, Threlfall, EJ. Molecular phylogenetic typing of pandemic isolates of Salmonella enteritidis. FEMS Microbiol Lett 1992; 90: 153–60.CrossRefGoogle Scholar
37.Stanley, J, Burens, AP, Threlfall, EJ, Chowdrey, N, Goldsworthy, M. Genetic relationships among strains of Salmonella enteritidis in a national epidemic in Switzerland. Epidemiol Infect 1992; 108: 213–20.CrossRefGoogle Scholar