Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T15:39:28.191Z Has data issue: false hasContentIssue false

The influence of the thyroid gland on antitoxin production in different species

Published online by Cambridge University Press:  15 May 2009

Jennifer Shewell
Affiliation:
National Institute for Medical Research, Mill Hill, London, N.W. 7
D. A. Long
Affiliation:
National Institute for Medical Research, Mill Hill, London, N.W. 7
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The influence of the thyroid gland on the production of antitoxins to two alum-precipitated bacterial exotoxins has been investigated in different animal species.

2. Rats, rabbits and mice produce more circulating antitoxin when thyroidectomized, and less when made hyperthyroid by thyroxine administration, than control animals.

3. Guinea-pigs produce slightly less antitoxin when thyroidectomized, and markedly more when thyroxine treated, than control animals.

We are grateful to Dr J. S. F. Niven for histological examination of tissues, and to Miss M. V. Mussett, B.Sc., for statistical analyses. The alum-precipitated tetanus toxoid XW 2044, and tetanus toxin XW 1322, were kindly supplied by Miss Mollie Barr, M.Sc., of the Wellcome Research Laboratories, Beckenham, Kent, and we are also grateful to Mr P. Rodican of the Lister Institute, Elstree, for a supply of tetanus toxin 829.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1959

References

REFERENCES

Brown-Grant, K. (1958). J. Endocrin. 17, 197.CrossRefGoogle Scholar
Bruce, H. M. & Parkes, A. S. (1949). J. Hyg., Camb., 47, 202.CrossRefGoogle Scholar
Ecker, E. & Goldblatt, H. (1921). J. exp. Med. 34, 275.CrossRefGoogle Scholar
Feldman, J. D. (1956). Amer. J. Physiol. 184, 369.CrossRefGoogle Scholar
Gerwing, Julia, Long, D. A. & Pitt-Rivers, Rosalind (1958). J. Physiol. 144, 229.CrossRefGoogle Scholar
Harris, G. W. (1955). Ciba Foundation Colloquia on Endocrinology, 8, 531.Google Scholar
Houssay, B. A. & Sordelli, A. (1921). C.R. Soc. biol., Paris, 85, 679, 1220.Google Scholar
Jaffe, H. L. & Marine, D. (1924). J. infect. Dis. 35, 334.CrossRefGoogle Scholar
Long, D. A. (1957). Int. Arch. Allergy, Basel, 10, 5.CrossRefGoogle Scholar
Long, D. A. & Martin, A. J. P. (1956). Lancet, i, 464.CrossRefGoogle Scholar
Long, D. A. & Shewell, Jennifer (1955). Brit. J. exp. Path. 36, 351.Google Scholar
Lostroh, A. J. & Jordan, C. W. (1955). Proc. Soc. exp. Biol., N.Y., 90, 267.CrossRefGoogle Scholar
Nilzén, Å. (1957). Acta allerg., Kbh., 11, 45.CrossRefGoogle Scholar
Römer, P. H. & Sames, TH. (1909). Z. ImmunForsch. 3, 344.Google Scholar
Shewell, Jennifer & Long, D. A. (1956). J. Hyg., Camb., 54, 452.Google Scholar
Soliman, F. A. & Reineke, E. P. (1954). J. Endocrin. 10, 305.CrossRefGoogle Scholar
Také, N. M. & Marine, D. (1923). J. infect. Dis. 33, 217.CrossRefGoogle Scholar