Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T15:35:24.242Z Has data issue: false hasContentIssue false

Influence of multiple plating from fluid media on salmonella isolation from animal feeding stuffs

Published online by Cambridge University Press:  25 March 2010

R. W. S. Harvey
Affiliation:
Regional Public Health Laboratory, University Hospital of Wales, Heath Park, Cardiff CF4 4XW
T. H. Price
Affiliation:
Regional Public Health Laboratory, University Hospital of Wales, Heath Park, Cardiff CF4 4XW
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The influence of multiple plating of fluid cultures on salmonella isolation from animal feeding stuffs was examined. Four platings were made from broth culture after 24 h at 37 °C and four platings from selenite enrichment from 24 h at 43 °C. Selenite enrichment followed broth culture which was used as a pre-enrichment stage. Brilliant green MacConkey agar plates were employed for broth subculture and brilliant green MacConkey and desoxycholate citrate agars for selenite subculture. The eight brilliant green plates subcultured from broth and selenite were examined for salmonellas after incubation for 24 h at 37 °C. The four desoxycholate citrate agars after 24 h at 37 °C were used for motility enrichment. The food sample size was a single 100 g instead of 4 x 25 g cultured in an earlier study. This pooling of samples aimed at technical economy. Quadruple plating played an important part in salmonella isolation from 100 g specimens. The combination of multiple plating with motility enrichment was the most successful technique used.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

References

Carnot, P. & Garnier, M. (1902). Sur le technique des cultures en tubes de sable. Comptes Rendus des Séances de la Société de Biologie et de ses Filiales 54, 748.Google Scholar
Carnot, P. & Weill-Hallé, B. (1915). Cultures en ‘tubes de sable’ pour le diagnostic rapide de la fièvre typhoïde et le dépistage des porteura de germes. Comptes Rendus hebdomadaires des Séances de l' Académie des Sciences, Paris 160. 148.Google Scholar
Chau, P. Y. & Huang, C. T. (1974). A one day selective migration process for detecting salmonellae in faeces. Journal of Clinical Pathology 27, 405.CrossRefGoogle Scholar
Chau, P. Y. & Huang, C. T. (1976). A simple procedure for screening of salmonella using a semi-solid enrichment and a semi-solid indicator medium. Journal of Applied Bacteriology 41, 283.CrossRefGoogle Scholar
Craigie, J. (1931). Studies on the serological reactions of the flagella of B. typhosus. Journal of Immunology 21, 417.CrossRefGoogle Scholar
Dixon, J. M. S. (1961). Rapid isolation of salmonellae from faeces. Journal of Clinical Pathology 14, 397.CrossRefGoogle ScholarPubMed
Friedberger, E. & Putter, E. (1920). Weitere Versuch mit Kapillareteigmethode. Münchner Medizinische Wochenschrift 67, 398.Google Scholar
Gabis, D. A. & Silliker, J. H. (1974). ICMSF methods studies. II. Comparison of analytical schemes for detection of Salmonella in high moisture foods. Canadian Journal of Microbiology 20, 663.CrossRefGoogle ScholarPubMed
Gunther, C. B. & Tuft, L. (1939). A comparative study of media employed in the isolation of typhoid bacilli from faeces and urines. Journal of Laboratory and Clinical Medicine 24, 461.Google Scholar
Harvey, R. W. S. (1956). Choice of a selective medium for the routine isolation of members of the salmonella group. Monthly Bulletin of the Ministry of Health and the Public Health Laboratory Service 15, 118.Google ScholarPubMed
Harvey, R. W. S. (1965). A study of the factors governing the isolation of salmonellas from infected materials and the application of improved techniques to epidemiological problems. M.D. Thesis, University of Edinburgh.Google Scholar
Harvey, R. W. S. & Price, T. H. (1967). The isolation of salmonellas from animal feeding stuffs. Journal of Hygiene 65, 237.CrossRefGoogle Scholar
Harvey, R. W. S. & Price, T. H. (1974). Isolation of Salmonellas. Public Health Laboratory Service Monograph Series 8, London: H.M.S.O.Google Scholar
Harvey, R. W. S. & Thomson, S. (1953). Optimum temperature of incubation for isolation of salmonellae. Monthly Bulletin of the Ministry of Health and the Public Health Laboratory Service. 12, 149.Google ScholarPubMed
Harvey, R. W. S., Mahabir, D. E. & Price, T. H. (1966). A method of secondary enrichment for salmonellas independent of selectively toxic chemicals. Journal of Hygiene 64, 301.CrossRefGoogle ScholarPubMed
Houston, A. C. (1914). Tenth report on research work to the Metropolitan Water Board.Google Scholar
Ino, J. & Graber, C. D. (1955). Recovery of salmonella from contaminated cultures. United States Armed Forces Medical Journal 6, 586.Google ScholarPubMed
Kroger, E. (1951). Zur Bakterienausscheidung bei Typhus – Paratyphus Keimtragern. Archiv für Hygiene und Bakteriologie 135, 215.Google Scholar
Loeffler, F. (1906). Der kulturelle Nachweiss der Typhusbazillen in Faeces, Erde und Wasser mit Hilfe des Malachitgrüns. Deutsche Medizinische Wochenschrift 32, 289.Google Scholar
Mohit, B., Aly, R. & Bourgeois, L. D. (1975). A simple single-step immunoimmobilisation method for the detection of Salmonella in the presence of large numbers of other bacteria. Journal of Medical Microbiology 8, 173.CrossRefGoogle ScholarPubMed
Silliker, J. H. & Gabis, D. A. (1973). ICMSF methods studies. I. Comparison of analytical schemes for detection of Salmonella in dried foods. Canadian Journal of Microbiology 19, 475.Google Scholar
Stuart, P. F. & Pivnick, H. (1965). Isolation of salmonellae by selective motility systems. Applied Microbiology 13, 365.Google Scholar