Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T16:15:17.707Z Has data issue: false hasContentIssue false

Enterobacteriaceae suppression by three different oral doses of polymyxin E in human volunteers

Published online by Cambridge University Press:  19 October 2009

J. J. M. van Saene
Affiliation:
Laboratory for Pharmaceutical Technology and Dispensing, University of Groningen, A. Deusinglaan 2, 9713 AW Groningen, The Netherlands
H. K. F. van Saene
Affiliation:
Department of Medical Microbiology, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, UK
N. J. Ph. Tarko-Smit
Affiliation:
Laboratory for Pharmaceutical Technology and Dispensing, University of Groningen, A. Deusinglaan 2, 9713 AW Groningen, The Netherlands
G. J. J. Beukeveld
Affiliation:
Central Laboratory for Clinical Chemistry, University Hospital, Oostersingel 59, 9713 EZ Groningen, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Polymyxin E is frequently used as an oral drug for flora suppression of the gastrointestinal canal. The suppression effect is dose dependent because polymyxin E is moderately inactivated by faecal and food compounds. Three oral polymyxin E doses (150, 300, 600 mg daily) were given to six volunteers for 6 days. The Enterobacteriaceae suppression effect was compared by means of the suppression index i.e. ratio of total number of faecal samples free of Enterobacteriaceae to the total number of faecal samples. The impact on the indigenous (mostly anaerobic) flora was measured in four ways: (i) beta-aspartylglycine content; (ii) volatile fatty acid pattern; (iii) yeast overgrowth and (iv) Streptococcus faecalis decrease. Enterobacteriaceae suppression was most successful during 600 mg oral polymyxin E (suppression indices during 150, 300 and 600 mg were 0·32, 0·55 and 0·89 respectively). None of the four markers of indigenous flora alterations were positive. However, using this dosage half of the volunteers suffered rather severe gastrointestinal side-effects. Oral polymyxin E in a dosage of minimum 600 mg daily seems to possess the ideal properties of a flora suppression agent, if the gastrointestinal side-effects could be mitigated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Brodie, J., Macqveen, I. A. & Livingstone, D. (1970). The effect of trimethoprim-sulphamethoxazole on typhoid and Salmonella carriers. British Medical Journal 3, 318319.CrossRefGoogle ScholarPubMed
de Gast, G. C. & van Saene, H. K. F. (1979). Therapy of Salmonella carriership. In New criteria for Antimicrobial Therapy: Maintenance of Digestive Tract Colonization Resistance, (ed. van der Waay, D. and Verhoef, J.), pp. 208213. Amsterdam: Excerpta Medica.Google Scholar
Gotoff, S. P. & Lepper, M. H. (1965). Treatment Salmonella carriers with colistin sulfate. The American Journal of Medical Sciences 249, 399403.CrossRefGoogle ScholarPubMed
Grylack, L., Neugebauer, D. & Scanton, J. W. (1982). Effects of oral antibiotics on stool flora and overall sensitivity patterns in an intensive care nursery. Pediatric Research 16, 509511.CrossRefGoogle Scholar
Hazenberg, M. P., Pennock-Schröder, A. M., van den Boom, M. & van de Merwe, J. P. (1984). Binding to and antimicrobial effect of ampicillin, neomycin and polymyxin B on human faeces. Epidemiology and Infection 93, 2734.Google ScholarPubMed
Kienitz, M. (1963). Darmfloraveranderungen während der Behandlung akuter Durchfallserkrankungen junger Säuglinge mit Colistin. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene 190, 219224.Google Scholar
King, K. (1980). Prophylactic nonabsorbable antibiotics in leukaemic patients. Epidemiology and Infection 85, 141151.Google ScholarPubMed
Klupsch, E. (1961). Neue Erfahrungen in der Behandlung von Coli-Dyspepsie der Säuglinge. Medizinische Klinik 56, 103104.Google Scholar
Lambert-Zechovsky, N., Bingen, E., Beaufils, F., Bourrillon, A. & Mathieu, H. (1981). Etude de l'écostème intestinal de l'enfant: Influence de la colistine. Pathologie et Biologie 29, 293297.Google Scholar
Le Frock, J. L., Ellis, C. A. & Weinstein, L. (1979). The impact of hospitalization on the aerobic faecal microflora American Journal of Medical Sciences 277, 269274.CrossRefGoogle Scholar
Löffler, A. & Graf von Westpiialen, H. (1986). Successful treatment of chronic Salmonella excretor with ofloxacin. Lancet i, 1206.CrossRefGoogle Scholar
Marsden, H. B. & Hyde, W. A. (1962). Colistin methanesulphonate in childhood infections. Lancet ii, 740.CrossRefGoogle Scholar
Moriyama, Y., Ohno, Y., Sato, M., Itoga, H., Hayashi, N. & Kinoshita, Y. (1979). Infections during treatment of leukemia. III. Efficacy of intestinal sterilization therapy by means of polymyxin B. 16, 16631666.Google Scholar
Poth, E. J. (1982). Historical development of intestinal antisepsis. World Journal of Surgery 6, 153159.CrossRefGoogle ScholarPubMed
Pulaski, E. J., Baker, H. J., Rosenberg, M. L. & Connell, J. F. (1949). Laboratory and clinical studies of polymyxin B and E. Journal of Clinical Investigations 28, 10281031.CrossRefGoogle Scholar
Schmöger, R. (1961). Antibiotische Therapie der Ernährungsstörungen mit Colistin. Medische Welt 49, 25682571.Google Scholar
Schneider, E. L. (1983). Infections diseases in the elderly. Annals of Internal Medicine 98, 395400.CrossRefGoogle ScholarPubMed
Schoö;Nenberg, H., Seeliger, H. P. R. & Werner, H. (1963). Untersuchungen über den Einfluss von Colistin auf die Darmflora von Säuglingen. Monatsschrift für kinderheilkunde 111, 140142.Google Scholar
Stoutenbeek, Ch. P., van Saene, H. K. F., Miranda, D. R. & Zandstra, D. F. (1984). The effect of selective decontamination of the digestive tract on colonisation and infection rate in multiple trauma patients. Intensive Care Medicine 10, 185192.CrossRefGoogle ScholarPubMed
Urban, N. (1960). Die Behandlung der ‘Hausdyspepsie’ des Säuglings mit Colistin. Deutsch Medisch Wochenschrift 85, 22422245.CrossRefGoogle Scholar
van den Boqaard, A. E., Hazen, M. J. & van Boven, C. P. (1986). Quantitative gas chromatographic analysis of volatile fatty acids in spent culture media and body fluids. Journal of Clinical Microbiology 23, 523530.CrossRefGoogle Scholar
van den Bogaard, A. E. J. M., Weidema, W. F., van Boven, C. P. A. & van der Waaij, D. (1986). Recolonization and colonization resistance of the large bowel after three methods of preoperative preparation of the gastrointestinal tract for elective colorectal surgery. Epidemiology and Infection 97, 4959.Google ScholarPubMed
van Saene, H. K. F. & Stoutenbeek, C. P. (1987). Selective decontamination. Journal of Antimicrobial Chemotherapy 20, 462465.CrossRefGoogle ScholarPubMed
van Saene, J. J. M., van Saene, H. K. F., Stoutenbeek, Ch. P. & Lerk, C. F. (1985). Influence of faeces on the activity of antimicrobial agents for decontamination of the alimentary canal. Scandinavian Journal of Infectious Diseases 17, 295300.CrossRefGoogle ScholarPubMed
Veringa, E. M. & van der Waay, D. (1984). Biological inactivation by faeces of antimicrobial drugs applicable in selective decontamination of the digestive tract. Journal of Antimicrobial Chemotherapy 14, 605612.CrossRefGoogle ScholarPubMed
Welling, G. W. (1982). Comparison of methods for the determination of β-aspartylglycine in fecal supernatants of leucemic patients treated with antimicrobial agents. Journal of Chromatography 232, 5562.CrossRefGoogle Scholar