Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T19:46:56.906Z Has data issue: false hasContentIssue false

The effect of selective decontamination of the digestive tract with the addition of systemic cefotaxime on the aerobic faecal flora of mice

Published online by Cambridge University Press:  19 October 2009

A. B. J. Speekenbrink
Affiliation:
University Department of Bacteriology and Immunology, Western Infirmary, Glasgow G11 6NT
S. R. Alcock
Affiliation:
University Department of Bacteriology and Immunology, Western Infirmary, Glasgow G11 6NT
J. Forrester
Affiliation:
University Department of Bacteriology and Immunology, Western Infirmary, Glasgow G11 6NT
D. M. V. Parrott
Affiliation:
University Department of Bacteriology and Immunology, Western Infirmary, Glasgow G11 6NT
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The administration per-orally to mice of the non-absorbable antibiotics polymyxin E, tobramycin and amphotericin B resulted in the elimination of detectable aerobic gram-negative rods from the faecal flora without affecting the total viable aerobic count. The addition of parental cefotaxime to the regime caused a fall in the number of aerobic lactobacilli and an increase in the number of enterococci. The rise was associated with the translocation of viable enterococci to the mesenteric lymph nodes and the spleen. The changes induced by cefotaxime were reversed when the antibiotic was withdrawn. Following withdrawal of all antibiotics the total aerobic faecal flora increased to above normal levels, but there was no associated diarrhoea. Attempts to implant exogenous enterobacteria into the digestive tract resulted in only low level colonization both in treated mice and in control mice. These results may have implications for the use of this antibiotic regime for selective decontamination of the digestive tract in humans, particularly those who are immunocompromised.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

REFERENCES

Berg, R. D. & Garlington, A. W. (1979). Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infection and Immunity 23, 403411.Google Scholar
Burdon, D. W., Ambrose, N. S., Keighley, M. R. B. & Youngs, D. (1985). The effect of a single intravenous dose of cefotaxime on the faecal flora. Infection 13, Supplement 1, S134S136.CrossRefGoogle ScholarPubMed
de Vries-Hospers, H., Sleijfer, D. T., Mulder, N. H., van der Waaij, D., Nieweg, H. O. & van Saene, H. K. F. (1981). Bacteriological aspects of selective decontamination of the digestive tract as a method of infection prevention in granulocytopenic patients. Antimicrobial Agents and Chemotherapy 19, 813820.CrossRefGoogle ScholarPubMed
Dubos, R., Schaedler, R. W., Costello, R. & Hoet, P. (1965). Indigenous, normal and autochtonous flora of the gastrointestinal tract. Journal of Experimental Medicine 122, 6775.Google Scholar
Guggenbichler, J. P., Kofler, J. & Allerberger, F. (1985). The influence of third generation cephalosporins on the aerobic intestinal flora. Infection 13 Supplement 1, S137S139.Google Scholar
Guiot, H. F. L., Broek, P. J. van den, Meer, J. W. M. van der & Furth, R. van (1983). Selective antimicrobial modulation of the intestinal flora of patients with acute nonlymphocytic leukemia: a double-blind placebo-controlled study. Journal of Infectious Diseases 147, 615623.CrossRefGoogle ScholarPubMed
Hargadon, M. T., Young, V. M., Schimpff, S. C., Wade, J. C. & Minah, G. E. (1981). Selective suppression of alimentary tract microflora as prophylaxis during granulocytopenia. Antimicrobial Agents and Chemotherapy 20, 620624.CrossRefGoogle Scholar
Heimdahl, A., Gahrton, G., Groth, C. G., Lundgren, G., Lönnquist, B., Ringden, O. & Nord, C. E. (1984). Selective decontamination of alimentary tract microbial flora in patients treated with bone marrow transplantation. Scandinavian Journal of Infectious Diseases 16, 5160.Google Scholar
Jones, R. N. (1985). Gram-positive superinfections following betalactam chemotherapy: The significance of the enterococcus. Infection 13, Supplement 1, S81S88.CrossRefGoogle ScholarPubMed
Knothe, H., Dette, G. A. & Shah, P. M. (1985). Impact of injectable cephalosporins on the gastrointestinal microflora: Observations in healthy volunteers and hospitalized patients. Infection 13 Supplement 1, S129S133.CrossRefGoogle ScholarPubMed
Lambert-Zechovsky, N., Ingen, B., Aujard, Y. & Mathieu, H. (1985). Impact of cefotaxime on the faecal flora in children. Infection 13, Supplement 1, S140S144.Google Scholar
McKendrick, M. W., Geddes, A. W. & Wise, R. (1980). Clinical experience with Cefotaxime (HR-756). In Current Chemotherapy and Infectious Disease (ed. Nelson, & Grassi, G. G.), pp. 123125. Washington, D.C: American Society for Microbiology.Google Scholar
Miles, A. A., Misra, S. S. & Irwin, J. O. (1938). The estimation of the bactericidal power of blood. Journal of Hygiene 38, 732749.Google Scholar
Owens, R. L. & Berg, R. D. (1980). Bacterial translocation from the gastrointestinal tract of athymic (nu/nu) mice. Infection and Immunity 27, 461467.Google Scholar
Owens, R. L. & Berg, R. D. (1982). Bacterial translocation from the gastrointestinal tract of thymectomized mice. Current Microbiology 7, 169174.CrossRefGoogle Scholar
Rogers, M. J., Moore, R. & Cohen, J. (1985). The relationship between faecal endotoxin and faecal microflora of the C57BL mouse. Journal of Hygiene 95, 397402.CrossRefGoogle ScholarPubMed
Sleijfer, D. Th, Mulder, N. H., Vries-Hospers, H. G. de, Fidler, V., Nieweg, O., Waaij, D. van der & Saene, H. K. F. (1980). Infection in granulocytopenic patients by selective decontamination of the digestive tract. European Journal of Cancer 16, 856869.Google ScholarPubMed
Steffen, E. K. & Berg, R. D. (1983). Relationships between cecal population levels of indigenous bacteria and translocation to the mesenteric lymph nodes. Infection and Immunity 39, 12521259.CrossRefGoogle Scholar
Stoutenbeek, Ch. P., Saene, H. K. F. van, Miranda, D. R., Waaij, D. van der & Zandstra, D. F. (1984). The effect of selective decontamination of the digestive tract on colonization and infection rate in multiple trauma patients. Intensive Care Medicine 10, 185192.CrossRefGoogle ScholarPubMed
van der Waaij, D. & Berghuis, J. M. (1984). Determination of the colonization resistance of the digestive tract of individual mice. Journal of Hygiene 72, 379387.CrossRefGoogle Scholar
van der Waaij, D., Berohuis-de Vries, J. M. & Wees, Lekkerkerk-van der (1971). Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. Journal of Hygiene 69, 409411.Google Scholar
van der Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-Van der Wees, J. E. C. (1972). Colonization resistance in mice and the spread of bacteria to the lymphatic organs in mice. Journal of Hygiene 70, 335342.CrossRefGoogle Scholar
van der Waaij, D. & Berghuis de Vries, J. M. (1974). Selective elimination of Enterobacteriaceae species from the digestive tract in mice and monkeys. Journal of Hygiene 72, 205211.CrossRefGoogle ScholarPubMed
van der Waaij, D., Vossen, J. M., Korthals Altes, C. & Hartgrink, C. (1977). Reconventionalization following antibiotic decontamination in man and animals. American Journal of Clinical Nutrition 30, 18871895.CrossRefGoogle Scholar