Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T11:25:55.220Z Has data issue: false hasContentIssue false

The diphtheria bacillus and its toxin: a model system

Published online by Cambridge University Press:  19 October 2009

A. M. Pappenheimer Jr
Affiliation:
Biological Laboratories, Harvard University, Cambridge, MA 02138, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Friedrich Loeffler's classical paper entitled ‘Untersuchungen über die Bedeutung der Mikroorganismen für die Entstehung der Diphtheric beim Menschen, bei der Taube und der Kalbe’ (Studies on the significance of bacteria in causing diphtheria in man, pigeons and calves), was published in 1884. In this paper and those which followed during the next few years, Loeffler described the diphtheria bacillus and its isolation in pure culture, and proved its relationship to the disease diphtheria. While the credit for the discovery of diphtheria toxin must go to Roux & Yersin (1888), Loeffler clearly predicted its existence in his original paper. Because, at autopsy, living ‘virulent’ diphtheria bacilli could only be recovered from experimental animals at the site of injection, Loeffler postulated that the bacteria must have released into the bloodstream a ‘chemical poison’ which caused the characteristic sterile haemorrhagic lesions in remote organs. He even noted early in 1888 that ‘the bacterial poison resembles in its action the poison [now known as abrin] obtained from jaquiriti seeds, which causes inflammation and the production of false membranes when placed on the mucous membranes either of men or animals’ (cited in Loeffler, 1908). Today we know the reason for this astute observation. Both abrin and diphtheria toxin block protein synthesis in sensitive eucaryotic cells (Collier, 1975; Olsnes & Pihl, 1976; Pappenheimer, 1977), albeit by different mechanisms. Almost a quarter of a century after the discovery of the diphtheria bacillus, the British Medical Research Council published a 718-page volume on diphtheria. In the first chapter Loeffler (1908) reviewed the history of the disease and reminisced at some length about his own early work. By 1908 when this book appeared, a good deal was already known about the epidemiology of diphtheria, the bacteriology of the diphtheria bacillus, its mode of spread by healthy adults and the protective effect of antitoxin. However, other than its proteinaceous nature almost nothing was known of the chemistry of diphtheria toxin or its mode of action. The interpretation of many of Loeffler's astute early observations and questions that puzzled him remained obscure and unanswerable until the discovery of lysogenic conversion to toxinogenicity by Freeman (1951) and the realization that the tox structural gene was carried by a bacteriophage (Uchida, Gill & Pappenhcimer, 1971).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

Bacha, P., Murphy, J. R. & Reichlin, S. (1983). Organ-specific binding of a thyrotropin-releasing hormone–diphtheria toxin complex after intravenous administration to rats. Endocrinology 113, 10721076.CrossRefGoogle ScholarPubMed
Boquet, P. & Duflot, E. (1982). Tetanus toxin fragment forms channels in lipid vesicles at low pH. Proceedings of the National Academy of Sciences, U.S.A. 79, 76147618.CrossRefGoogle ScholarPubMed
Codina, J., Hildebrandt, J., Iyengar, R., Birmbaumer, L., Sekura, R. D. & Manclark, C. R. (1983). Pertussis toxin substrate, the putative N1 component of adenylcyclases, is a β-heterodimer regulated by guanine nucleotide and magnesium. Proceedings of the National Academy of Sciences, U.S.A. 80, 42764280.CrossRefGoogle Scholar
Collier, R. J. (1975). Diphtheria toxin: mode of action and structure. Bacteriological Reviews 39, 5485.CrossRefGoogle ScholarPubMed
Collier, R. J., Westbrook, E. M., McKay, D. B. & Eisenberg, D. (1982). X-ray grade crystals of diphtheria toxin. Journal of Biological Chemistry 257, 52835285.CrossRefGoogle ScholarPubMed
Donovan, J. J., Simon, M. I., Draper, R. K. & Montal, M. (1981). Diphtheria toxin forms transmembrane channels in planar lipid bilayers. Proceedings of the National Academy of Sciences, U.S.A. 78, 172176.CrossRefGoogle ScholarPubMed
Eidels, L., Proia, R. & Hart, D. A. (1983). Membrane receptors for bacterial toxins. Microbiological Reviews 47, 596620.CrossRefGoogle ScholarPubMed
Finn, C. W., Silver, R. P., Habig, W. H., Hardigree, M. C, Zon, G. & Garon, C. F. (1984). The structural gene for tetanus toxin is on a plasmid. Science 224, 881884.CrossRefGoogle ScholarPubMed
Freeman, V. J. (1951). Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. Journal of Bacteriology 61, 675688.CrossRefGoogle ScholarPubMed
Gill, D. M. (1978). Seven toxic peptides that cross membranes. In Bacterial Toxins and Cell Membranes (ed. Jeljiascewicz, J. and Wadström, T.). New York: Academic Press.Google Scholar
Gill, D. M., Hope, J. A., Meren, R. & Jacobs, D. S. (1981). Cholera toxin's interaction with cell membranes. In Receptor-mediated Binding and Internalization of Toxins and Hormones(ed. Middlebrook, J. L. and Kohn, L. D.). New York: Academic Press.Google Scholar
Greenfield, L., Bjorn, M. J., Horn, G., Fong, D., Buck, G. A., Collier, R. J. & Kaplan, D. A. (1983). Nucleotide sequence of the structural gene for diphtheria toxin carried by corynephage β. Proceedings of the National Academy of Sciences, U.S.A. 80, 68536857.CrossRefGoogle Scholar
Gyles, C., So, M. & Falkow, S. (1974). The enterotoxin plasmids of Escherichia coli. Journal of Infectious Diseases 130, 4049.CrossRefGoogle ScholarPubMed
Jacewicz, M. & Keusch, G. T. (1983). Evidence for a translocation step in the cytotoxic action of Shiga toxin. Journal of Infectious Diseases 148, 844854.CrossRefGoogle ScholarPubMed
Kagen, B. L., Finkelstein, A. & Colomboni, M. (1981). Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes. Proceedings of the National Academy of Sciences. U.S.A. 78, 4950–4054.CrossRefGoogle Scholar
Katada, T. & Ui, M. (1982). ADP-ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. Journal of Biological chemistry 257, 72107216.CrossRefGoogle ScholarPubMed
Loeffler, F. (1884). Untersuchungen über die Bedeutung der Mikroörgnnismen für die Entstehung der Diphtherie beim Menschen, bei der Taube und beim Kalbe. Mitteilung Klinische Gesundheit, Berlin 2, 451499.Google Scholar
Loeffler, F. (1908). The history of diphtheria. In The Bacteriology of Diphtheria (ed. Nuttall, G. H. F. and Graham-Smith, G. S.). Cambridge: Cambridge University Press.Google Scholar
Lory, S. & Collier, R.J. (1980). Expression of enzyme activity by exotoxin A from Pseudomonas aeruginosa. Infection and Immunity 28. 494501.CrossRefGoogle ScholarPubMed
McKeever, B. & Sarma, R. (1982). Preliminary crystallographic investigation of the protein toxin from Corynebacterium diphtheriae. Journal of Biological Chemistry 257. 69236925.CrossRefGoogle ScholarPubMed
Mekalanos, J. J. (1983). Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35, 253263.CrossRefGoogle ScholarPubMed
Olsnes, S. & Phil, A. (1976). Abrin, ricin and their associated agglutinins. In The Specificity of Animal, Bacterial and Plant Toxins (ed. Cuatracasas, P.). London: Chapman and Hall.Google Scholar
Olsnes, S. & Phil, A. (1982). Toxic lectins and related proteins. In Molecular Action of Toxins and Finises (ed. Cohen, P. and van Heyningen, S.), pp. 51105. Amsterdam: Elsevier Biomedical Press.CrossRefGoogle Scholar
Pappenheimer, A. M. Jr (1977). Diphtheria toxin. Annual Review of Biochemistry 46, 6994.CrossRefGoogle ScholarPubMed
Pappenheimer, A. M. Jr (1982). Diphtheria: studies on the biology of an infectious disease. The Harvey Lectures 76, 4574. New York: Academic Press.Google Scholar
Pappenheimer, A. M. Jr & Murphy, J. R. (1983). The molecular epidemiology of diphtheria. Lancet ii, 923926.CrossRefGoogle Scholar
Ratti, G., Rappuoli, R. & Giannini, G. (1983). The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox+) genome. Nucleic Acids Research 11, 65896595.CrossRefGoogle ScholarPubMed
Righelato, R. C. & van Hemert, P. A. (1969). Growth and toxin synthesis in batch and chemostat cultures of Corynebacterium diphtheriae. Journal of General Microbiology 58, 403410.CrossRefGoogle ScholarPubMed
Roux, E. & Yersin, D. (1888). Contribution à l'étudo de la diphtérie. Annales de l' Institut Pasteur 2, 629661.Google Scholar
Saragaea, A., Maximescu, P. & Meitert, E. (1979). Corynebacterium diphtheriae: microbiological methods used in clinical and epidemiological investigations. In Methods in Microbiology, vol. XIII (ed. Bergam, T. and Norris, F. R.), pp. 61176. New York: Academic Press.Google Scholar
Uchida, T., Gill, D. M. & Pappenheimer, A. M. Jr (1971). Mutation in the structural gene for diphtheria toxin carried by temperate phage. Nature New Biology 233, 811.CrossRefGoogle ScholarPubMed
Uhr, J. W. & Vitetta, E. S. (1983). The use of immunotoxins for the treatment of cancer. In Monoclonal Antibodies and Cancer (ed. Boss, B. D., Langman, R., Trowbridge, A. and Dulbecco, R.), pp. 8598. Orlando, Florida: Academic Press.Google Scholar
van Ness, B. G., Howard, J. B. & Bodley, J. W. (1980). ADP-ribosylation of elongation factor 2 by diphtheria toxin. Journal of Biological chemistry 255, 1071010716.CrossRefGoogle ScholarPubMed
Vasil, M. L. & Iglewski, B. H. (1978). Comparative toxicities of diphtheria toxin and Pseudomonas aeruginosa exotoxin A: evidence for different cell receptors. Journal of General Microbiology 108, 333337.CrossRefGoogle ScholarPubMed
Yamaizumi, M., Mekada, E., Uchida, T. & Okado, Y. (1978). One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15, 245250.CrossRefGoogle ScholarPubMed