Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T15:12:43.233Z Has data issue: false hasContentIssue false

Dermatophyte lesions in the hedgehog as a reservoir of penicillin-resistant staphylococci

Published online by Cambridge University Press:  15 May 2009

John M. B. Smith
Affiliation:
Department of Microbiology, Medical School, University of Otago, Dunedin, New Zealand
Mary J. Marples
Affiliation:
Department of Microbiology, Medical School, University of Otago, Dunedin, New Zealand
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An antibiotic substance biologically resembling penicillin G was produced by the growth of Trichophyton mentagrophytes var. erinacei, T. mentagrophytes var. granulare and T. mentagrophytes var. interdigitale in Sabouraud's dextrose broth. An antibiotic concentration equivalent to 7 units/ml. penicillin G could be produced by var. erinacei when grown in a suitable nutrient medium. Epidermophyton floccosum also produced a substance which inhibited the growth of the Oxford staphylococcus. However, this substance was not completely inactivated by penicillinase. No in vitro antibiotic production could be demonstrated with T. rubrum, T. concentricum, T. terrestre or Microsporum canis.

Penicillin production could be demonstrated in rabbit skin infected with T. ment-agrophytes var. erinacei. Pathogenic staphylococci falling on a var. erinacei guinea-pig lesion increased rapidly in the ringworm tissue. The inhibiting concentration of penicillin G for such staphylococci was shown to increase from 5·0 µg./ml. to above 20·0 µg./ml. as the ringworm progressed.

The presence of T. mentagrophytes var. erinacei in a high percentage of hedgehogs is considered the main reason why the skin is the primary site of staphylococcal multiplication in hedgehogs and why most of the Staphylococcias aureus strains recoverable from these animals are penicillin resistant.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

References

Brian, P. W. (1957). The ecological significance of antibiotic production. In Microbial Ecology. Seventh Symposium of the Society for General Microbiology, p. 168. Cambridge University Press.Google Scholar
Catanei, A. (1929). Cultures d'Achorion schoenleini et de Trichophyton sur milieux artificiels en présence de microbes et de produits microbiens et sanguins. Arch. Inst. Pasteur Algér., 7, 184.Google Scholar
Elek, S. D. (1959). Staphylococcus pyogenes and its Relation to Disease, 767 pages. Edinburgh: E. and S. Livingstone Ltd.Google Scholar
Fabiani, G. (1932). Influence de la vaccination du milieu et de l'addition d'antivirus sur la croissance d'achorion schoenleini. C.R. Soc. Biol., Paris, 109, 403.Google Scholar
Gorill, R. H. & Penikett, E. J. (1957). New method of studying the bacterial flora of infected open wounds and burns. Lancet, ii, 370.CrossRefGoogle Scholar
Gross, W. A., Actor, P., Jambor, W. P. & Pagano, J. (1963). The Trichophyton mentagrophytes and Microsporum canis infection of the guinea-pig. I. The development of a chronic infection. J. invest. Derm. 40, 299.Google Scholar
Leitner, F., Sweeney, H. M., Martin, T. F. & Cohen, S. (1963). Induction of staphylococcal penicillinase by benzyl-penicillin: effect of pH, concentration of ferrous ion and inducer, and duration of exposure of cells to inducer. J. Bact. 86, 717.CrossRefGoogle ScholarPubMed
Marples, M. J. & Bailey, M. J. (1957). A search for the presence of pathogenic bacteria and fungi in the interdigital spaces of the foot. Brit. J. Derm. 69, 379.CrossRefGoogle ScholarPubMed
Patiala, R. (1947). On the symbiosis of the dermatophytes and Staphylococcus aureus. Ann. Parasit. hum. comp. 22, 165.CrossRefGoogle Scholar
Peck, S. M. & Hewitt, W. L. (1945). The production of an antibiotic substance similar to penicillin by pathogenic Fungi (Dermatophytes). Publ. Hlth Rep., Wash., 60, 148.CrossRefGoogle Scholar
Smith, J. M. B. (1965). Staphylococcus aureus strains associated with the hedgehog, Erinaceus europaeus. J. Hyg., Camb., 63, 285.CrossRefGoogle ScholarPubMed
Smith, J. M. B. & Marples, M. J. (1963). Trichophyton mentagrophytes var. erinacei. Sabouraudia, 3, 1.Google Scholar
Smith, J. M. B. & Marples, M. J. (1964). A natural reservoir of penicillin-resistant strains of Staphylococcus aureus. Nature, Lond., 201, 844.CrossRefGoogle ScholarPubMed
Uri, J., Szathmary, S. & Herpay, Z. (1957). Production of an antibiotic by dermatophytes living in horn tissue. Nature, Lond., 179, 1029.CrossRefGoogle Scholar
Vanbreuseghem, R. (1948). Antagonisme des cultures de Staphylococcus aureus et de Trichophyton (Anchorion) schoenleini. Ann. Parasit. hum. comp. 23, 47.CrossRefGoogle ScholarPubMed
Waksman, S. A., Horning, E. S. & Spencer, E. L. (1942). The production of two antibacterial substances, fumigacin and clavacin. Science, 96, 202.CrossRefGoogle ScholarPubMed
Williams, R. E. O. (1963). Healthy carriage of Staphylococcus aureus: its prevalence and importance. Bact. Rev. 27, 56CrossRefGoogle ScholarPubMed