Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T21:59:49.083Z Has data issue: false hasContentIssue false

A cryptogram for recording rotavirus strains: the Rotacode

Published online by Cambridge University Press:  19 October 2009

R. B. Moosai
Affiliation:
Department of Virology, University of Newcastle upon Tyne, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP
R. Alcock
Affiliation:
Department of Virology, University of Newcastle upon Tyne, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP
C. R. Madeley
Affiliation:
Department of Virology, University of Newcastle upon Tyne, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The RNA genome of rotaviruses consists of 11 segments in four size-classes which can be separated by polyacrylamide gel electrophoresis, although 11 separate bands are not shown by all strains. We propose a cryptogram (Rotacode) based on the relative distance of migration of adjacent bands in each size-class for coding the typical pattern of each strain of virus. This provides a shorthand for recording details of each strain and for grouping electrophoretically similar strains.

Rotacode was found to be reliable and reproducible, with identical codes being obtained for the same samples in repeated experiments under code and by various observers. Rotacode was also used to analyse 189 strains obtained over a three-year period and differentiated 13 electrophoretypes. This confirms the considerable electrophoretic variability of wild strains.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

Bohl, E. H., Saif, L. J., Thiel, K. W., Agnes, A. D. & Cross, R. F. (1982). Porcine pararotavirus: detection, differentiation from Rotavirus and pathogenesis and gnotobiotic pigs. Journal of Clinical Microbiology 15, 312319.CrossRefGoogle ScholarPubMed
Clarke, I. N. & McCrae, M. A. (1982). Structural analysis of electrophoretic variation in the genome profiles of rotavirus field isolates. Infection and Immunity 36, 492497.CrossRefGoogle ScholarPubMed
Communicable Diseases (SCOTLAND) REPORT (1984). Weekly report produced by the Communicable Diseases (Scotland) Unit, Ruchill Hospital, Glasgow, and published by the Common Services Agency, Scottish Home and Health Department, St Andrews House, Edinburgh, Scotland.Google Scholar
Dimitrov, D. H., Estes, M. K., Ranoelova, S. M., Shindarov, L. M., Melnick, J. L. & Graham, D. Y. (1983). Detection of antigenically distinct rotaviruses from infants. Infection and Immunity 41, 523526.CrossRefGoogle ScholarPubMed
Espejo, R. T., Calderon, E., Gonzalez, N., Salomon, A., Martuscelli, A. & Romero, P. (1979). Presence of two distinct types of Rotavirus in infants and young children hospitalised with acute gastroenteritis in Mexico City, 1977. Journal of Infectious Diseases 139, no. 4, 474477.CrossRefGoogle ScholarPubMed
Herring, A. J., Inglis, N. F., Ojeh, C. K., Snodgrass, D. R. & Menzies, J. D. (1982). Rapid diagnosis of rotavirus infection by direct detection of viral nucleic acid in silver-stained polyacrylamide gels. Journal of Clinical Microbiology 16, 473477.CrossRefGoogle ScholarPubMed
Tao, Hung, Guangmu, Chen, Changan, Wang, Henli, Yao, Zhaoying, Fang, Tungxin, Chao, Zinyi, Cou, Weiwe, Ye, Xuejian, Chang, Siiausen, Den, Xiaoquang, Liong & Weicheng, Chang. (1984). Waterborne outbreak of rotavirus diarrhoea in adults in China caused by a novel rotavirus. Lancet i, 11391142.Google Scholar
Kalica, A. R., Garon, C. F.Wyatt, R. G., Mebus, C. A., Van Kirk, D. H., Chanock, R. M. & Kapikian, A. Z. (1976). Differentiation of human and calf reovims-like agents associated with diarrhoea, using polyacrylamide gel electrophoresis of RNA. Virology 74, 8692.Google Scholar
Kalica, A. R., Sereno, M. M., Wyatt, R. G., Mebus, C. A., Chanock, R. M. & Kapikian, A. Z. (1978). Comparison of human and animal rotavirus strains by gel electrophoresis of viral RXA. Virology 87, 247–225.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bncteriophage T4. Nature, London 227, 680685.CrossRefGoogle ScholarPubMed
Lourenco, M. H., Nicolas, J. C., Cohen, J., Scherrer, R. & Bricout, F. (1981). Study of human rotavirus genome by electrophoresis: Attempt of classification among strains isolated in France. Annales de Virologie (Institut Pasteur) 132E, 161173.CrossRefGoogle Scholar
McNulty, M. S., Allan, G. M., Todd, D., McFerran, J. B. & McCracken, R. M. (1981). Isolation from chickens of a rotavirus lacking the rotavirus group antigen. Journal of General Virology 55, 405413.CrossRefGoogle ScholarPubMed
Pereira, H. G., Azeredo, R. S., Leite, J. P. G., Candeias, J. A. N., Rácz, M. L., Linhares, A. C., Gabbay, Y. B. & Trabulsi, J. R. (1983). Electrophoretic study of the genome of human rotaviruses from Rio De Janeiro, Sao Paulo and Pará, Brazil. Journal of Hygiene 90, 117125.CrossRefGoogle Scholar
Rodger, S. M. & Holmes, I. H. (1979). Comparison of the genomes of simian, bovine and human rotaviruses by gel electrophoresis and detection of genomic variation among bovine isolates. Journal of Virology 30, 839846.Google Scholar
Rodger, S. M., Schnagl, R. D. & Holmes, I. H. (1975). Biochemical and biophysical characteristics of diarrhoea viruses of human and calf origin. Journal of Virology 16, 12291235.Google Scholar
Snodgrass, D. R., Herring, A. J., Campbell, I., Inglis, J. M. & Hargreaves, F. D. (1984). Comparison of atypical rotaviruses from calves, piglets, lambs and man. Journal of General Virology 65, 909914.CrossRefGoogle ScholarPubMed
Todd, D. & McNulty, M. S. (1976). Characterisation of pig rotavirus RNA. Journal of General Virology 33, 147150.Google Scholar