Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T11:54:54.403Z Has data issue: false hasContentIssue false

Correlation between esterase electrophoretic polymorphism and virulence–associated traits in extra–intestinal invasive strains of Escherichia coli

Published online by Cambridge University Press:  15 May 2009

Ph. Goullet*
Affiliation:
Laboratoire de Microbiologie, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75018 Paris, France
B. Picard
Affiliation:
Laboratoire de Microbiologie, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, 75018 Paris, France
M. Contrepois
Affiliation:
Institute National de la Recherche Agronomique, Laboratoire de Microbiologie, Centre de Recherche de Clermont–Ferrand–Theix, Saint Genès Champanelle, France
J. De Rycke
Affiliation:
Institut National de la Recherche Agronomique, Station de Pathologie de la Reproduction, Centre de Recherche de Tours–Nouzilly, Monnaie, France
J. Barnouin
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire d'ecopathologie, Centre de Recherche de Clermont–Ferrand–Theix, Saint Genès Champanelle, France
*
*Correspondence: Ph. Goullet, Service de Microbiologie, Hôpital Beaujon (Faculté de Médecine Xavier Bichat, Université Paris 7), 100 Bd du General Leclerc, 92110 Clichy, France.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The electrophoretic variations of carboxylesterase B and of esterases A, C and I, the presence of mannose resistant haemagglutinin, α–haemolysin, cytotoxic necrotizing factor type 1 (CNF1) and certain O antigens were compared in 150 strains of Escherichia coli responsible for extra-intestinal infections. Electrophoretic mobilities of outer membrane proteins (OMP) were also studied for strains belonging to O4, O6, O7, O8 and O75 serogroups. Fast migrating allozymes of carboxylesterase B (pattern B1) were correlated with slow migrating allozymes of esterase C, serogroups O7 and O8, lack of virulence factor, and particular OMP patterns, whereas slow migrating allozymes of carboxylesterase B (pattern B2) were correlated with fast migrating allozymes of esterase C, serogroups O2, O4, O6, O18 and O75, virulence factor production, and distinct OMP patterns. Allozymes of esterases A and I were not clearly correlated with the distribution of virulence factors. The pattern B2 was more strongly associated with CNF1 than with α–haemolysin and mannose resistant haemagglutinin. These results substantiate the view that the electrophoretic pattern B2 of carboxylesterase B identified most of the highly pathogenic strains implicated in extra-intestinal infection of humans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

REFERENCES

de Rycke, J, Gonzalez, EA, Blanco, J, Oswald, E, Blanco, M, Boivin, R. Evidence for two types of cytotoxic necrotizing factor in human and animal isolates of Escherichia coli. J Clin Microbiol 1990; 28: 694–9.Google Scholar
Caprioli, A, Falbo, L, Roda, G, Ruggeri, FM, Zona, C. Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun 1983; 39: 1300–6.Google Scholar
Berger, H, Hacker, J, Juarez, A, Hughes, C, Goebel, W. Cloning of the chromosomal determinants encoding haemolysin production and mannose-resistant haemagglutination in Escherichia coli. J Bacteriol 1982; 152: 1241–7.CrossRefGoogle ScholarPubMed
Low, D, David, V, Lark, D, Schoolnik, G, Falkow, S. Gene clusters governing the production of hemolysin and mannose-resistant hemagglutination are closely linked in Escherichia coli serotypes O4 and O6 isolated from urinary tract infections. Infect Immun 1984; 43: 353–8.Google Scholar
Evans, DJ, Evans, DG, Hohne, C, Noble, MA, Haldane, EV, Lior, H, Young, LS. Hemolysin and K. antigens in relation to serotype and hemagglutination type of Escherichia coli isolated from extraintestinal infections. J Clin Microbiol 1981; 13: 171–8.Google Scholar
Green, CP, Thomas, VL. Hemagglutination of human type O erythrocytes, hemolysin production and serogrouping of Escherichia coli isolates from patients with acute pyelonephritis, cystitis and asymptomatic bacteriuria. Infect Immun 1981; 31: 309–15.Google Scholar
Hacker, J, Schroter, G, Schrettenbrunner, A, Hughes, C, Goebel, W. Hemolytic Escherichia coli strains in the human fecal flora as potential urinary pathogens. Zentralbl Bakteriol Mikrobiol Hyg 1983; 254: 370–8.Google Scholar
Czirok, E, Milch, H, Csiszar, K, Csik, M. Virulence factors of Escherichia coli. Acta Microbiol Hung 1986; 33: 6983.Google ScholarPubMed
Caprioli, A, Falbo, V, Ruggeri, FM. et al. Cytotoxic necrotizing factor production by hemolytic strains of Escherichia coli causing extraintestinal infections. J Clin Microbiol 1987; 25: 146–9.Google Scholar
Blanco, J, Alonso, MP, Gonzalez, EA, Blanco, M, Garabal, JI. Virulence factors of bacteraemic Escherichia coli with particular reference to production of cytotoxic necrotising factor (CNF) by P-fimbriate strains. J Med Microbiol 1990; 31: 175–83.Google Scholar
Johnson, JR. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 1991; 4: 80128.Google Scholar
Goullet, Ph.. An esterase zymogram of Escherichia coli. J Gen Microbiol 1973; 77: 2735.Google Scholar
Goullet, Ph, Picard, B. Comparative esterase electrophoretic polymorhism of Escherichia coli isolates obtained from animal and human sources. J Gen Microbiol 1986; 132: 1843–51.Google Scholar
Goullet, Ph, Picard, B, Laget, PF. Purification and properties of carboxylesterase B of Escherichia coli. Ann Microbiol (Institut Pasteur) 1984; 135A: 375–87.Google Scholar
Goullet, Ph, Picard, B. Highly pathogenic strains of Escherichia coli revealed by the distinct electrophoretic pattern of carboxylesterase B. J Gen Microbiol 1986; 132: 1853–8.Google Scholar
Goullet, Ph, Picard, B. Electrophoretic type B2 of carboxylesterase B for characterisation of highly pathogenic Escherichia coli strains from extra-intestinal infections. J Med Microbiol 1990; 33: 11–6.Google Scholar
Johnson, JR., Goullet, Ph, Picard, B, Moseley, SL, Roberts, PL, Stamm, WE. Association of carboxylesterase B electrophoretic pattern with presence and expression of urovirulence factor determinants and antimicrobial resistance among strains of Escherichia coli that cause urosepsis. Infect Immun 1991; 59: 2311–5.Google Scholar
Orskov, I, Orskov, F. Escherichia coli in extra-intestinal infections. J Hyg 1985; 95: 551–75.Google Scholar
Goullet, Ph, Picard, B. A two-dimensional electrophoretic profile for bacterial esterases. Electrophoresis 1985; 6: 132–5.Google Scholar
Stirn, S, Orskov, F, Mansa, B. Episome carried surface antigen K88 of E. coli. II. Isolation and chemical analysis. J. Bacteriol 1967; 143: 731–9.CrossRefGoogle Scholar
de Rycke, J, Guillot, JF, Boivin, R. Cytotoxins in non-enterotoxigenic strains of Escherichia coli isolated from feces of diarrheic calves. Vet Microbiol 1987; 15: 137–50.Google Scholar
Dassouli-Mrani-Belkebir, A, Contrepois, M, Girardeau, JP, der Vartanian, M. Characters of Escherichia coli O78 isolated from septicaemic animals. Vet Microbiol 1988; 17: 345–56.Google Scholar
Lutkenhaus, JF. Role of a major outer membrane protein in Escherichia coli. J Bacteriol 1977; 138: 969–75.Google Scholar
Schnaitman, CA. Outer membrane proteins of Escherichia coli. III. Evidence that the major protein of Escherichia coli OIII outer membrane consists of four distinct polypeptides species. J Bacteriol 1974; 118: 442–59.Google Scholar
Oakley, BR, Kirsch, DR, Morris, NR. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 1980; 105: 361–3.CrossRefGoogle ScholarPubMed
Benzecri, JP. In: L’analyse de correspondance. l’Analyse des données. Dunod. Paris, 1984.Google Scholar
Hill, MO. Correspondence analysis: a neglected multivariate method. Appl Stat 1974: 3: 237–51.Google Scholar
Selander, RK, Korhonen, TK, Vaisanen-Rhen, V, Williams, PH, Pattison, PE, Caugant, DA. Genetic relationship and clonal structure of strains of Escherichia coli causing neonatal septicemia and meningitis. Infect Immun 1986; 52: 213–22.Google Scholar
Arthur, M, Arbeit, RD, Kim, C. et al. Restriction fragment length polymorphisms among uropathogenic Escherichia coli isolates: pap-related sequences compared with rrn operons. Infect Immun 1990; 58: 471–9.Google Scholar
Arbeit, RD, Arthur, M, Dunn, R, Kim, C, Selander, RK, Goldstein, R. Resolution of recent evolutionary divergence among Escherichia coli from related lineages the application of pulsed field electrophoresis to molecular epidemiology. J Infect Dis 1990; 161: 230–5.CrossRefGoogle ScholarPubMed
Picard, B, Picard-Pasquier, N, Krishnamoorthy, R, Goullet, Ph. Characterization of highly virulent Escherichia coli strains by ribosomal DNA restriction fragment length polymorphism. FEMS Microbiol Lett 1991; 82: 183–8.Google Scholar
Goullet, Ph, Picard, B. Comparative electrophoretic polymorphism of esterases and other enzymes in Escherichia coli. J Gen Microbiol 1989; 135: 135–43.Google ScholarPubMed
Picard, B, Goullet, Ph. Correlation between electrophoretic types B1 and B2 of carboxylesterase B and host-dependent factors in Escherichia coli septicaemia. Epidemiol Infect 1988; 100: 5161.Google Scholar
Picard, B, Goullet, Ph. Correlation between electrophoretic types B1 and B2 of carboxylesterase B and sex of patients in Escherichia coli urinary tract infections. Epidemiol Infect 1989; 103: 97103.Google Scholar
Caprioli, A, Falbo, V, Ruggeri, FM, Minelli, F, Orskov, I, Donelli, G. Relationship between cytotoxic necrotizing factor production and serotype in hemolytic Escherichia coli. J Clin Microbiol 1989; 27: 758–61.Google Scholar
O’Hanley, P, Low, D, Romero, I, Lark, K, Vosti, K, Falkow, S, Schoolnik, G. Gal-Gal binding and hemolysin phenotypes and genotypes associated with uropathogenic Escherichia coli. N Engl J Med 1985; 7: 414–20.CrossRefGoogle Scholar
Cherifi, A, Contrepois, M, Picard, B, Goullet, Ph, de Rycke, J, Fairbrother, J, Barnouin, J. Factors and markers of virulence in Escherichia coli from human septicemia. FEMS Microbiol Lett 1990; 70: 279–84.Google Scholar
Cherifi, A, Contrepois, M, Picard, B, Goullet, Ph, Orskov, I, Orskov, F, De Rycke, J. Clonal relationships among Escherichia coli serogroup O6 isolates from human and animal infections. FEMS Microbiol Lett 1991; 80: 225–30.Google Scholar
Picard, B, Goullet, Ph, Krishnanmoorthy, R. A novel approach to study of the structural basis of enzyme polymorphism. Analysis of carboxylesterase B of Escherichia coli as model. Biochem J 1987; 241: 877–81.CrossRefGoogle ScholarPubMed
Ochman, H, Selander, RK. Standard reference strains of Escherichia coli from natural populations. J Bacteriol 1984; 157: 690–3.Google Scholar
Herzer, PJ, Inouye, S, Inouye, M, Whittam, T. Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J Bacteriol 1990; 172: 6175–81.Google Scholar