Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T22:10:19.879Z Has data issue: false hasContentIssue false

Conversion by corynephages and its role in the natural history of diphtheria

Published online by Cambridge University Press:  19 October 2009

N. B. Groman
Affiliation:
Department of Microbiology and Immunology, School of Medicine, University of Washington, Seattle, Washington 98195, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The conversion of non-toxinogenic Corynebacterium diphtheriae to toxinogeny has been reviewed. The biology of converting phage and the relationship of converting phages to nonconverting phages are summarized. The significance of these findings to the natural history and evolution of diphtheria is assessed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

Barksdale, L. (1955). Sur quelques bactériophages de Corynebacterium diphtheriae at leurs hôtes. Compte rendu des séances de l' Académie des Sciences, Paris 240, 18311833.Google Scholar
Barksdale, L. (1982). In Immunology of Human Infection (ed. Nahmias, A. J. and O'Reilly, R. J.), pp. 171199. New York: Plenum.Google Scholar
Barksdalk, L., Linder, R., Sulea, I. T. & Pollice, M. (1981). Phospholipase D activity of Corynebacterium pseudotuberculosis (Corynebacterium oris) and Corynebacterium ulcerans, a distinctive marker within the genus Corynebacterium. Journal of Clinical Microbiology 13, 335343.CrossRefGoogle Scholar
Barksdale, W. L. Jr & Pappenheimer, A. M., (1954). Phage-host relationships in non-toxigenic and toxigenic diphtheria bacilli. Journal of Bacteriology 67. 220232.CrossRefGoogle Scholar
Buck, G. A. & Groman, N. B. (1981 a). Physical mapping of β-converting and γ-nonconverting corynebacteriophage genomes. Journal of Bacteriology 148, 131142.CrossRefGoogle ScholarPubMed
Buck, G. A. & Groman, N. B. (1981 b). Genetic elements novel for Corynebacterium diphtheriae: specialized transducing elements and transposons. Journal of Bacteriology 148. 143152.CrossRefGoogle ScholarPubMed
Buck, G. A. & Groman, N. B. (1981 c). Identification of DNA restriction fragments of β-converting corynebacteriophages that carry the gene for diphtheria toxin. Journal of Bacteriology 148. 153162.CrossRefGoogle ScholarPubMed
Buck, G., Groman, N. & Falkow, S. (1978). Relationship between β converting and γ non-converting corynebacteriophage DNA, Nature, London 271, 683685.CrossRefGoogle ScholarPubMed
Campbell, A. (1969). Episomes. New York: Harper & Row.Google Scholar
Campbell, A. (1981). Evolutionary significance of accessory DNA elements in bacteria. Annual Review of Microbiology 35, 5583.CrossRefGoogle ScholarPubMed
Campbell, A. & Botstein, D. (1983). In Lambda II (ed. Hendrix, R. W., Roberts, J. W., Stahl, F. W. and Weisberg, R. A.), pp. 305380. New York: Cold Spring Harbor Laboratory.Google Scholar
Carne, H. R. (1968). Action of bacteriophages obtained from Corynebacterium diphtheriae on C. ulcerans and C. ovis. Nature, London 217, 10661067.CrossRefGoogle Scholar
Costa, J. J., Michel, J. L., Rappuoli, R. & Murphy, J. R. (1981). Restriction of corynebacteriophage βc and βvir and physical localization of the diphtheria tox operon. Journal of Bacteriology 148, 124130.CrossRefGoogle Scholar
Freeman, V. J. (1951). Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. Journal of Bacteriology 61, 675688.CrossRefGoogle ScholarPubMed
Freeman, V. J. & Morse, I. U. (1952). Further observations on the change to virulence of bacteriophage-infected avirulent strains of Corynebacterium diphtheriae. Journal of Bacteriology 63, 407414.CrossRefGoogle Scholar
Greenfield, L., Bjorn, M. J., Horn, G., Fong, D., Buck, G. A., Collier, R. J. & Kaplan, D. A. (1983). Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage. Proceedings of the National Academy of Sciences, U.S.A. 80, 68536857.CrossRefGoogle ScholarPubMed
Groman, N. B. (1953). Evidence for the induced nature of the change from nontoxigenicity to toxigenicity in Corynebacterium diphtheriae as a result of exposure to specific bacteriophage. Journal of Bacteriology 66, 184191.CrossRefGoogle ScholarPubMed
Groman, N. B. (1955). Evidence for the active role of bacteriophage in the conversion of nontoxigenic Corynebacterium diphtheriae to toxin production. Journal of Bacteriology 69, 915.CrossRefGoogle ScholarPubMed
Groman, N. B. (1956). Conversion in Corynebacterium diphtheriae with phages originating from nontoxigenic strains. Virology 2, 843844.CrossRefGoogle ScholarPubMed
Groman, N., Cianciotto, N., Bjorn, M. & Rabin, M. (1983). Detection and expression of DNA homologous to the tox gene in nontoxinogenic isolates of Corynebacterium diphtheriae. Infection and Immunity 42, 4856.CrossRefGoogle Scholar
Groman, N. B. & Eaton, M. (1955). Genetic factors in Corynebacterium diphtheriae conversion. Journal of Bacteriology 70, 637640.CrossRefGoogle ScholarPubMed
Groman, N. B., Eaton, M. & Booher, Z. K. (1958). Studies of mono- and polylysogenic Cornyebacterium diphtheriae. Journal of Bacteriology 75, 320325.CrossRefGoogle Scholar
Groman, N. B. & Laird, W. (1977). Bacteriophage production by doubly lysogenic Corynebacterium diphtheriae. Journal of Virology 23, 592598.CrossRefGoogle ScholarPubMed
Groman, N. B. & Memmer, R. (1958). Lysogeny and conversion in milis and miis-like Corynebacterium diphtheriae. Journal of General Microbiology 19, 634644.CrossRefGoogle Scholar
Groman, N. B. & Rabin, M. (1980). Superinfection exclusion by heteroimmune corynebacteriophages. Journal of Virology 36, 526532.CrossRefGoogle ScholarPubMed
Groman, N. B. & Rabin, M. (1982). Gene responsible forsuperinfection exclusion of heteroimmune corynebacteriophage. Journal of Virology 42, 4954.CrossRefGoogle ScholarPubMed
Holmes, R. K. (1976). Characterization and genetic mapping of nontoxinogenic (tox) mutants of corynebacteriophage beta. Journal of Virology 19, 195207.CrossRefGoogle ScholarPubMed
Holmes, R. K. & Barksdale, L. (1969). Genetic analysis of tox + and tox bacteriophages of Corynebacterium diphlheriae. Journal of Virology 3, 586598.CrossRefGoogle Scholar
Holmes, R. K. & Barksdale, L. (1970). Comparative studies with tox + and tox corynebacteriophages. Journal of Virology 5, 783794.CrossRefGoogle ScholarPubMed
Kaczorek, M., Delpeyroux, F., Chenciner, N., Streeck, R. E., Murphy, J. R., Boquet, P. & Tiollais, P. (1983). Nucleotide sequence and expression of diphtheria tox228 gene in Escherichia coli. Science 221, 855858.CrossRefGoogle ScholarPubMed
Keddie, R. M. & Bousfield, I. J. (1980). In Microbial Classification and Identification (ed. Goodfellow, M. and Board, R. G.), pp. 167188. London: Academic Press.Google Scholar
Laird, W. & Groman, N. B. (1976 a). Prophage map of converting corynebacteriophnge beta. Journal of Virology 19, 208219.CrossRefGoogle ScholarPubMed
Laird, W. & Groman, N. B. (1976 b). Isolation and characterization of tox mutants of corynebacteriophage beta. Journal of Virology 19, 220227.CrossRefGoogle ScholarPubMed
Laird, W. & Groman, N. B. (1976 c). Orientation of the tox gene in the prophage of corynebacteriophage beta. Journal of Virology 19, 228231.CrossRefGoogle ScholarPubMed
Leong, D., Coleman, K. D. & Murphy, J. R. (1983). Cloned fragment A of diphtheria toxin is expressed and secreted in the periplasmic space of Escherichia coli K12. Science 220, 515517.CrossRefGoogle ScholarPubMed
Maximescu, P. (1968). New host-strains for the lysogenic Corynebacterium diphtheriae Park Williams No. 8 strain. Journal of General Microbiology 53, 125133.CrossRefGoogle Scholar
Maximescu, P. (1978). Studies on the PW 8 phage of the Park Williams No. 8 strain of C. diphtheriae and on species within Corynebacterium genus capable of producing diphtherial toxin. Archives roumaines de pathologie experimental el de microbiologie 37, 180190.Google Scholar
Maximescu, P., Oprisan, A., Pop, A. & Potorac, E. (1974). Further studies on Corynebacterium species capable of producing diphtheria toxin (C. diphtheriae, C. ulcerans, C. ovis). Journal of General Microbiology 82, 4956.CrossRefGoogle ScholarPubMed
Michel, J. L., Rappuoli, R., Murphy, J. R. & Pappenheimer, A. M. Jr, (1982). Restriction endonuclease map of the nontoxigenic corynephage γc and its relationship to the toxigenic corynephage βc. Journal of Virology 42, 510518.CrossRefGoogle Scholar
Murphy, J. R., Pappenheimer, A. M. Jr & Tayart de Borms, S. (1974). Synthesis of diphtheria tox gene products in Escherichia coli extracts. Proceedings of the National Academy of Sciences, U.S.A. 71, 1115.CrossRefGoogle ScholarPubMed
Pappenheimer, A. M. Jr, (1982). Diphtheria: studies on the biology of an infectious disease. The Harvey Lectures, Series 76, 4573.Google Scholar
Pappenheimer, A. M. Jr & Murphy, J. R. (1983). Studies on the molecular epidemiology of diphtheria. Lancet ii, 923926.CrossRefGoogle Scholar
Parsons, E. I. (1955). Induction of toxigenicity in non-toxigenic strains of C. diphtheriae with bacteriophage derived from non-toxigenic strains. Proceedings of the Society for Experimental Biology and Medicine 90, 9193.CrossRefGoogle ScholarPubMed
Rappuoli, R., Michel, J. L. & Murphy, J. R. (1983 a). Integration of corynebacteriophage βtox+, ωtox+and γtox- into two attachment sites on the Corynebacterium diphtheriae chromosome. Journal of Bacteriology 153, 12021210.CrossRefGoogle Scholar
Rappuoli, R., Michel, J. L. & Murphy, J. R. (1983 b). Restriction endonuclease map of corynebacteriophage ωctox+ isolated from the Park-Williams No. 8 strain of Corynebacterium diphtheriae. Journal of Virology 45, 524530.CrossRefGoogle ScholarPubMed
Ratti, G., Rappuoli, R. & Giannini, G. (1983). The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox +) genome. Nucleic Acids Research 11, 65896595.CrossRefGoogle ScholarPubMed
Reanney, D. (1976). Extrachromosomal elements as possible agents of adaptation and development. Bacteriological Review 40, 552590.CrossRefGoogle ScholarPubMed
Roberts, J. W. & Devoret, R. (1983). In Lambda II(ed. Hendrix, R. W., Roberts, J. W., Stahl, F. W. and Weisberg, R. A.), pp. 123144. New York: Cold Spring Harbor Laboratory.Google Scholar
Saragea, A., Meiter, T. E. & Bica-Popii, V. (1966). Lysogenisation et conversion toxinogène chez Corynebacterium diphtheriae par des phages provenant de corynebacteries d'origine animale. Annales de l'Institut Pasteur, Paris 111, 171179.Google Scholar
Schiller, J., Strom, M., Groman, N. & Coyle, M. (1983). Relationship between pNG2, an Emr plasmid in Corynebacterium diphtheriae, and plasmids in aerobic skin coryneforms. Antimicrobial Agents and Chemotherapy 24, 892901.CrossRefGoogle ScholarPubMed
Singer, R. A. (1976). In Mechanisms in Toxinology (ed. Bemheimer, A. W.), pp. 3251. New York: Wiley.Google Scholar
Tweten, R. K. & Collier, R. J. (1983). Molecular cloning and expression of gene fragments from corynebacteriophage β encoding enzymatically active peptides of diphtheria toxin. Journal of Bacteriology 156. 680685.CrossRefGoogle ScholarPubMed
Uchida, T., Gill, D. M. & Pappenheimer, A. M. Jr, (1971). Mutation in the structural gene for diphtheria toxin carried by temperate phage β. Nature, London 233, 811.Google Scholar