Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-18T20:59:54.687Z Has data issue: false hasContentIssue false

Concentration and partial purification of poliomyelitis viruses

Published online by Cambridge University Press:  15 May 2009

K. H. Fantes
Affiliation:
Biochemistry Section, Virus Unit, Glaxo Laboratories Ltd, ‘Sefton Park’, Stoke Poges, Bucks
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Conditions are described under which the three types of live or formalin-inactivated poliomyelitis viruses can be concentrated 10–100 times in good yield, with elimination of approximately 90% of the extraneous protein normally present in poliovaccines.

2. It was shown that 0·1–0·2 mg./ml. AlPO4 almost quantitatively adsorbed the antigens, provided the adsorptions were carried out at a pH round about 5. Re-elution of the antigens occurred readily at pH 7–pH 8.

3. No noticeable conversion of the ‘D-antigen’ to the ‘C-antigen’ occurred during the concentration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1962

References

REFERENCES

Beale, A. J. & Mason, P. J. (1962). J. Hyg., Camb., 60, 113.Google Scholar
Charney, J. (1960). Chem. Eng. News, 38, 53.Google Scholar
Clark, P. F., Schindler, J. & Roberts, D. J. (1930). J. Bact. 20, 213.Google Scholar
Fulton, F. & Dumbell, K. R. (1949). J. gen. Microbiol. 3, 97.CrossRefGoogle Scholar
Grossowicz, N., Mercado, A. & Goldblum, N. (1960). Proc. Soc. exp. Biol. Med. 103, 872.CrossRefGoogle Scholar
Howitt, B. (1930). Proc. Soc. exp. Biol. 28, 158.Google Scholar
Hoyer, B. H., Bolton, E. T., Ormsbee, R. A., Le Bouvier, G., Ritter, D. B. & Larson, C. L. (1958). Science, 127, 859.Google Scholar
Kärber, (1958). Textbook of Virology, by Rhodes, A. J. & van Rooyen, C. E., 3rd edition, p. 65. Baltimore: The Williams & Wilkins Co.Google Scholar
Kritchevsky, D. & McCandless, R. F. J. (1959). Naturwissenschaften, 46, 114.Google Scholar
Le Bouvier, G. L. (1959). Brit. J. exp. Path. 40, 605.Google Scholar
Levintow, L. & Darnell, J. E. (1960). J. biol. Chem. 235, 70.Google Scholar
Lowry, O. H., Rosebrough, N. J., Lewis Farr, A. & Randall, J. R. (1951). J. biol. Chem. 193, 265.Google Scholar
Miller, H. K. & Schlesinger, R. W. (1955). J. Immunol. 75, 155.Google Scholar
Norrby, E. C. J. & Albertsson, P. A. (1960). Nature, Lond., 188, 1047.Google Scholar
Parke-Davis & Co. (1957). British Patent 777018.Google Scholar
Polson, A. & Hampton, J. W. F. (1957). J. Hyg., Camb., 55, 344.Google Scholar
Polson, A., Hampton, J. W. F. & Deeks, D. (1960). J. Hyg., Camb., 58, 419.Google Scholar
Rhoads, C. P. (1931). J. exp. Med. 29, 59.Google Scholar
Roizman, B., Mayer, M. & Rapp, H. J. (1958). J. Immunol. 81, 419.CrossRefGoogle Scholar
Roizman, B., Mayer, M. & Roane, P. R. (1959). J. Immunol. 82, 19.Google Scholar
Sabin, A. B. (1932). J. exp. Med. 56, 307.Google Scholar
Salk, J. E., Younger, J. S. & Ward, E. N. (1954). Amer. J. Hyg. 60, 214.Google Scholar
Schaeffer, M. & Brebner, W. B. (1933). Arch. Path. 15, 221.Google Scholar
Schwerdt, C. E. & Schaffer, F. L. (1956). Virology, 2, 665.Google Scholar
Steinman, H. G. & Murtaugh, P. A. (1959). Virology, 7, 291.CrossRefGoogle Scholar
Taverne, J., Marshall, J. H. & Fulton, F. (1958). J. gen. Microbiol. 19, 451.CrossRefGoogle Scholar
Taylor, J. & Graham, A. F. (1958). Virology, 6, 488.Google Scholar