Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T15:48:20.908Z Has data issue: false hasContentIssue false

Comparison of selenite F, Muller-Kauffmann tetrathionate and Rappaport's medium for the isolation of salmonellas from sewage-polluted natural water using a pre-enrichment technique

Published online by Cambridge University Press:  15 May 2009

R. W. S. Harvey
Affiliation:
Regional Public Health Laboratory, University Hospital of Wales, Heath Park, Cardiff.
T. H. Price
Affiliation:
Regional Public Health Laboratory, University Hospital of Wales, Heath Park, Cardiff.
Evangelia Xirouchaki
Affiliation:
Department of Hygiene and Epidemiology, University of Athens, Goudi, Athens 609
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three enrichment broths, selenite F, Muller-Kauffmann tetrathionate and Rappaport, were examined for their efficiency in salmonella isolation. The three media, prepared from single ingredients in the laboratory, were compared with their commercial equivalents. Laboratory-prepared media were more efficient for isolating salmonellas from sewage-polluted natural water samples. A pre-enrichment stage using buffered peptone water was employed throughout the investigation. The size of inoculum from the pre-enrichment medium was relevant to successful salmonella isolation. Inocula studied were 1 ml and one loopful (3 mm diameter loop). The smaller inoculum gave better results with Rappaport, the larger with selenite and tetrathionate. Using the optimal inocula, Rappaport was the most efficient enrichment broth of the three fluid media in this study.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

References

Anon. (1975). Meat and meat products – Detection of Salmonellae (reference method) International Standard ISO 3565–1975(E). Geneva: International Organization for Standardization.Google Scholar
Chau, P. Y. & Huang, C. T. (1971). Carriage rate of Salmonella serotypes in hospital patients and comparison of enrichment media for their isolation. Tropical Medicine, Nagasaki, Japan, 13, 94.Google Scholar
Chau, P. Y. & Leung, Y. K. (1978). Inhibitory action of various plating media on the growth of certain Salmonella serotypes. Journal of Applied Bacteriology 45, 341.CrossRefGoogle ScholarPubMed
Collard, P. & Unwin, M. (1958). A trial of Rappaport's medium. Journal of Clinical Pathology 11, 426.CrossRefGoogle ScholarPubMed
Edel, W. & Kampelmacher, E. H. (1969). Salmonella isolation in nine European laboratories using a standardized technique. Bulletin of the World Health Organization 41, 297.Google ScholarPubMed
Edel, W. & Kampelmacher, E. H. (1973). Comparative studies on the isolation of ‘sublethally’ injured salmonellae in nine European laboratories. Bulletin of the World Health Organization 48, 167.Google ScholarPubMed
Grunnet, K. (1975). Salmonella in sewage and receiving waters. Copenhagen: Fadl's Forlag.Google Scholar
Guth, F. (1916). Selennährböden für die elektive Züchtung von Typhusbacillen. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten. I. Abt Orig. 77, 487.Google Scholar
Harvey, R. W. S. (1956). Choice of a selective medium for the routine isolation of members of the salmonella group. Monthly Bulletin of the Ministry of Health and the Public Health Laboratory Service 15, 118.Google ScholarPubMed
Harvey, R. W. S. & Price, T. H. (1974). Isolation of Salmonellas. Public Health Laboratory Service Monograph Series 8, London, HMSO.Google Scholar
Harvey, R. W. S. & Price, T. H. (1975). Studies on the isolation of Salmonella dublin. Journal of Hygiene 74, 369.CrossRefGoogle ScholarPubMed
Harvey, R. W. S. & Price, T. H. (1977). Observations on pre-enrichment for isolating Salmonellas from sewage polluted natural water using Muller–Kaufmann tetrathionate broth prepared with fresh and desiccated ox bile. Journal of Applied Bacteriology 43, 145.CrossRefGoogle Scholar
Harvey, R. W. S. & Price, T. H. (1979). A review. Principles of salmonella isolation. Journal of Applied Bacteriology 46, 1.CrossRefGoogle ScholarPubMed
Harvey, R. W. S., Price, T. H. & Crone, P. B. (1975). Quality control tests of two salmonella enrichment media using different inocula. Journal of Hygiene 74, 375.CrossRefGoogle ScholarPubMed
Harvey, R. W. S. & Thompson, S. (1953). Optimum temperature of incubation for isolation of salmonellae. Monthly Bulletin of the Ministry of Health and the Public Health Laboratory Service 12, 149.Google ScholarPubMed
Hobbs, B. C. & Allison, V. D. (1945). Studies on the isolation of Bact. typhosum and Bact. paratyphosum B. III. Monthly Bulletin of the Ministry of Health and the Emergency Public Health Laboratory Service 4, 63.Google Scholar
Hooper, W. L. & Jenkins, H. R. (1965). An evaluation of Rappaport's magnesium chloride malachite green medium in the routine examination of faeces. Journal of Hygiene 63, 491.Google ScholarPubMed
Iveson, J. B. & Kovacs, N. (1967). A comparative trial of Rappaport enrichment medium for the isolation of salmonellae from faeces. Journal of Clinical Pathology 20, 290.CrossRefGoogle ScholarPubMed
Iveson, J. B., Kovacs, N. & Laurie, W. (1964). An improved method of isolating salmonellae from contaminated coconut. Journal of Clinical Pathology 17, 75.CrossRefGoogle ScholarPubMed
Jameson, J. E. (1963). A note on the isolation of salmonellae. Journal of Applied Bacteriology 26, 112.CrossRefGoogle Scholar
Kauffmann, F. (1930). Ein kombiniertes Anreicherungsverfahren für Typhus- und Paratyphusbazillen. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten I. Abt. Orig. 119, 148.Google Scholar
Kauffmann, F. (1935). Weitere Erfahrungen mit kombinierten Anreicherungsverfahren für Salmonella baxillen. Zeitschrift für Hygiene und Infektionskrankheiten 117, 26.CrossRefGoogle Scholar
Klett, A. (1900). Zur Kenntnis der reducirenden Eigenschaften der Bakterien. Zeitschrift für Hygiene und Infektionskrankheiten, Medizinische Microbiologie, Immunologie und Virologie 33, 137.CrossRefGoogle Scholar
Leifson, E. (1936). New selenite enrichment media for the isolation of typhoid and paratyphoid (salmonella) bacilli. American Journal of Hygiene 24, 423.Google Scholar
Loeffler, F. (1903). Demonstration eines neuen Verfahrens zum kulturellen Nachweise der Typhusbazillen in Fäces, Wasser und Erde. Deutsche Medizinische Wochenschrift 29, Vereins-Beilage 36, 286.Google Scholar
Loeffler, F. (1936). Der kulturelle Nachweiss der Typhusbacillen in Faeces, erde und Wasser mit Hilfe des Malachitgrüns Deutsche medizinische Wochenschrift 32, 289.Google Scholar
Mccoy, J. H. (1962). The isolation of salmonellae. Journal of Applied Bacteriology 25, 213.CrossRefGoogle Scholar
Muller, L. (1923). Un nouveau milieu d'enrichissement pour la recherche du bacille typhique et des paratyphiques. Comptes Rendus des Séances de la Société de Biologie et de ses filiales 89, 434.Google Scholar
Price, T. H. (1976). Isolation of Shigella sonnei by fluid media. Journal of Hygiene 77, 341.CrossRefGoogle ScholarPubMed
Rappaport, F., Konforti, N. & Navon, B. (1956). A new enrichment medium for certain salmonellae. Journal of Clinical Pathology 9, 261.CrossRefGoogle Scholar
Read, R. B. & Reyes, A. L. (1968). Variation in plating efficiency of salmonellae on eight lots of brilliant green agar. Applied Microbiology 16, 746.CrossRefGoogle ScholarPubMed
Sen, R. (1964). An assessment of the relative efficiency of several media in the isolation of Shigella and Salmonella from faeces. Indian Journal of Pathology and Bacteriology 7, 93.Google Scholar
Smith, H. W. (1970). Incidence in river water of Escherichia coli containing R factors. Nature, London 228, 1286.CrossRefGoogle ScholarPubMed
Stokes, E. J. (1978). Quality control in the bacteriological laboratory. Health Care World Wide. Intake Issue No. 58, 1. Abbott Laboratories Ltd.Google Scholar
Thomson, S. (1955). The numbers of pathogenic bacilli in faeces in intestinal diseases. Journal of Hygiene 53, 217.CrossRefGoogle ScholarPubMed
Vassiliadis, P. (1968). Shigella, Salmonella choleraesuis and Arizona in Rappaport's medium. Journal of Applied Bacteriology 31, 367.CrossRefGoogle ScholarPubMed
Vassiliadis, P., Papadakis, J. A., Karalis, D. & Trichopoulos, D. (1976). Enrichment in Muller–Kauffmann's broth and Rappaport's broth from buffered peptone water in the isolation of salmonellae from minced meat. Journal of Applied Bacteriology 40, 349.CrossRefGoogle ScholarPubMed
Vassiliadis, P., Patéraki, E., Papadakis, J. & Trichopoulos, D. (1974). Evaluation of the growth of salmonellae in Rappaport's broth and in Muller–Kauffmann's tetrathionate broth. Journal of Applied Bacteriology 37, 411.CrossRefGoogle ScholarPubMed
Vassiliadis, P., Papadakis, J., Patéraki, E., Trichopoulos, D., Karabatsos, B. & Papoutsakis, G. (1972). Isolement de Salmonella à partir de carcasses de poulets par enrichissement en bouillon et enrichissement secondaire en milieu de Rappaport. Archives de l'institut Pasteur Hellénique 18, 19.Google Scholar
Vassiliadis, P., Trichopoulos, D., Kalandidi, A. & xirouchaki, E. (1978). Isolation of Salmonellae from sewage with a new procedure of enrichment. Journal of Applied Bacteriology 44, 233.CrossRefGoogle ScholarPubMed
Vassiliadis, P., Trichopoulos, D., Papadakis, J. & Politi, G. (1970). Salmonella isolations in abattoirs in Greece, Journal of Hygiene 68, 601.Google ScholarPubMed
Van Schothorst, M., Gilbert, R. J., Harvey, R. W. S., Pietzsch, O. And Kampelmacher, E. H. (1978). Comparative studies on the isolation of salmonella from minced meat. Zentralblatt für Bakteriologie, Parasitenkunde und Infektionskrankheiten. I. Abt. Orig. B 167, 139.Google ScholarPubMed
Van Schothorst, M. & Van Leusden, F. M. (1972). Studies on the isolation of injured salmonellae from foods. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene (Orig. A) 221, 19.Google ScholarPubMed