Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T06:59:37.396Z Has data issue: false hasContentIssue false

Chemical disinfection of human rotaviruses: efficacy of commercially-available products in suspension tests

Published online by Cambridge University Press:  19 October 2009

V. Susan Springthorpe
Affiliation:
Department of Microbiology and Immunology, School of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
Jodi L. Grenier
Affiliation:
Department of Microbiology and Immunology, School of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
Nellie Lloyd-Evans
Affiliation:
Department of Microbiology and Immunology, School of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
Syed A. Sattar*
Affiliation:
Department of Microbiology and Immunology, School of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
*
*Author for correspondence.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suspension tests were conducted on 69 commercial and 7 non-commercial disinfectant formulations to determine which classes of chemicals were most active against human rotavirus (HRV). Virus samples, in the presence of varying levels of organic matter, were exposed to the disinfectants for 1 min. The levels of remaining infectious virus were determined by plaque assay. Products were rated by their ability to reduce the levels of infectious virus by more than 3 log10 in the presence or absence of tryptose phosphate broth (peptides and inorganic salts) or fecal matter.

Of the commercially-available products tested, only 25% were rated as highly and 7% as moderately effective. The remaining 68% were either effective only in the absence of any additional organic matter (48%) or were completely ineffective (20%). The majority (64%) of the moderately and highly effective products were further examined for their ability to inactivate > 6 log10 of infectious HRV in the presence of fecal matter or tryptose phosphate broth. With one exception, all these products were still effective. Products potentially suitable as topical antiseptics, hard surface disinfectants and instrument soaks were identified. The results emphasize the care that should be exercised in the selection of disinfectants for the control and prevention of rotaviral infections.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

REFERENCES

Berman, D. & Hoff, J. C. (1984). Inactivation of simian rotavirus SA-11 by chlorine, chlorine dioxide and monochloramine. Applied and Environmental Microbiology 48, 317323.CrossRefGoogle Scholar
Blackwell, J. H. & Chen, J. H. S. (1970). Effects of various germicidal chemicals on H.Ep.2 cell culture and herpes simplex virus. Journal of the Association of Official Analytical Chemists 53,12291236.Google Scholar
Brade, L., Schmidt, W. A. K. & Gattert, I.(1981). Zurrelativen Wirksamkeit von Desinfektionmitteln gegenüber Rotaviren. Zentralblatt fu¨ Bakteriologie Mikrobiologie und Hygiene(Orig. B) 174, 151159.Google Scholar
Champsaur, H., Questiaux, E., Prévot, J., Henry-Amar, D., Goldszmidt, D., Bourjouane, M. & Bach, C. (1984). Rotavirus carriage, asymptomatic infection and disease in the first two years of life. Journal of Infectious Diseases 149, 667674.CrossRefGoogle ScholarPubMed
Cheremisinoff, N. P., Cheremisinoff, P. N. & Trattner, R. B. (1981). In Chemical and Non-chemical Disinfection, p. 50. Ann Arbor, Michigan: Ann Arbor Science.Google Scholar
Death, J. E. & Coates, D. (1979). Effect of pH on sporicidal activity of buffered mixtures of alcohol and sodium hypochlorite. Journal of Clinical Pathology 32, 148153.CrossRefGoogle ScholarPubMed
Geigy, Documenta (1962). Scientific Tables, 6th ed. (ed. Diem, K.), p. 526. New York: Geigy Pharmaceuticals.Google Scholar
Gardner, J. F. & Gray, K. G. (1983). Chlorhexidine. In Disinfection, Sterilization and Preservation, (ed. Block, S. S.), pp. 251270. Philadelphia: Lea & Febiger.Google Scholar
Gerba, C. P., Wallis, C. & Melnick, J. L. (1975). Microbiological hazards of household toilets: droplet production and the fate of residual organisms. Applied Microbiology 30, 229237.CrossRefGoogle ScholarPubMed
Gottardi, W. (1976). On the reaction of chlorine, bromine, iodine and some N-chloro and N-bromo compounds with peptone in aqueous solutions. Zentralblatt für Bakteriologie und Hygiene. (Orig, B). 162, 384388.Google Scholar
Grabow, W. O. K., Gauss-Muller, V., Prozesky, O. W. & Deinhardt, F. (1983a). Inactivation of hepatitis A virus and indicator organisms in water by free chlorine residuals. Applied and Environmental Microbiology 46, 619624.CrossRefGoogle ScholarPubMed
Grabow, W. O. K., Coubrouqh, P.Hilner, C. & Bateman, B. W. (1983b). Inactivation of hepatitis A virus, other enteric viruses and indicator organisms in water by chlorination. Water Science and Technology 17, 657664.CrossRefGoogle Scholar
Harakeh, M. S. (1984). Inactivation of enteroviruses, rotaviruses and bacteriophages by peracetic acid in a municipal sewage effluent. FEMS Microbiology Letters 23, 2730.CrossRefGoogle Scholar
Harakeh, M. & Butler, M. (1984). Inactivation of human rotavirus, SA-11 and other enteric viruses in effluent by disinfectants. Journal of Hygiene 93, 157163.CrossRefGoogle Scholar
Herniman, K. A. J., Medhurst, P. M., Wilson, J. N. & Sellers, R. F. (1973). The action of heat, chemicals and disinfectants on swine vesicular disease virus. The Veterinary Record 93, 620624.CrossRefGoogle ScholarPubMed
Hoh, H., Presser, W. & Wigand, R. (1983). Nosokomial-infection durch Rotaviren bei Erwachsennen. Deutsche Medizinische Wochenschrift 108, 15861591.CrossRefGoogle Scholar
Ijaz, M. K., Sattar, S. A., Johnson-Lussenburg, C. M., Sprinothorpe, V. S. & Nair, R. C. (1985). Effect of relative humidity, atmospheric temperature, and suspending medium on the airborne survival of human rotavirus. Canadian Journal of Microbiology 31, 681685.CrossRefGoogle ScholarPubMed
Jarvis, J. D., Wynne, C. D., Enwrioht, L. & Williams, J. D. (1979). Handwashing and antiseptic-containing soaps in hospital. Journal of Clinical Pathology 32, 732737.CrossRefGoogle ScholarPubMed
Keswick, B. H., Pickering, L. K., Dupont, H. L. & Woodward, W. E. (1983). Prevalence of rotavirus in children in day-care centres. Journal of Pediatrics 103, 8586.CrossRefGoogle Scholar
Kirchhoff, H. (1969). Problems of virus disinfection shown with the example of Newcastle disease virus. Deutsche Tierarztliche Wochenschrift 76, 7174.Google Scholar
Klein, M. & Deforest, A. (1983). Principles of Viral Inactivation. In Disinfection, Sterilization and Preservation, (ed. Block, S. S.), pp. 422434. Philadelphia: Lea & Febiger.Google Scholar
Kurtz, J. B., Lee, T. W. & Parsons, A. J. (1980). The action of alcohols on rotavirus, astrovirus and enterovirus. Journal of Hospital Infection 1, 321325.CrossRefGoogle ScholarPubMed
Lloyd-Evans, N., Springthorpe, V. S. & Sattar, S. A. (1986). Chemical disinfection of human rotavirus-contaminated inanimate surfaces. Journal of Hygiene 97, 163173.CrossRefGoogle ScholarPubMed
Matthews, R. E. F. (1983). A Critical Appraisal of Viral Taxonomy. Boca Raton, Florida: C. R. C. Press, Inc.Google Scholar
Monulty, M.S. & Logan, E. F. (1983). Longtitudinal survey of rotavirus infection in calves. Veterinary Record 113, 333335.CrossRefGoogle Scholar
Nakao, J., Hers, R. G., Bachman, P. A. & Mahnel, H. (1978). Inactivation of transmissible gastroenteritis (TGE) virus of pigs. Berliner und Munchener Tierarztliche Wochenschrift 91, 353357.Google Scholar
Noone, C. & Banatvala, J. E. (1983). Hospital acquired rotaviral gastroenteritis in a general pediatric unit. Journal of Hospital Infection 4, 297299.CrossRefGoogle Scholar
Ramia, S. & Sattar, S. A. (1979). Simian rotavirus SA-11 plaque formation in the presence of trypsin. Journal of Clinical Microbiology 10, 609614.CrossRefGoogle ScholarPubMed
Ramia, S. & Sattar, S. A. (1980). Concentration of seeded simian rotavirus SA-11 from potable waters by using talc-Celite layers and hydroextraction. Applied and Environmental Microbiology 39, 493499.CrossRefGoogle ScholarPubMed
Raphael, R. A., Sattar, S. A. & Springthorpe, V. S. (1985). Long-term survival of human rotavirus in raw and treated water. Canadian Journal of Microbiology 31, 124128.CrossRefGoogle Scholar
Raphael, R. A., Sattar, S. A. & Springthorpe, V. S. (1986). Lack of human rotavirus inactivation by chlorine in seeded samples of drinking water. Sciences et Techniques de l'Eau (In the Press).Google Scholar
Rossi, A., Agliano, A. M., Spanu, T., Salvaggio, E., Rossodivita, A., Chezzi, C. & La Monica, S. (1982). Incidence of rotaviruses and astroviruses in children without symptoms of gastroenteritis. Igiene Moderna 78, 230239.Google Scholar
Ryder, R. W., McGowan, J. E. Jr., Hatch, M. H. & Palmer, E. L. (1977). Reovirus-like agent as a cause of nosocomial diarrhea. Journal of Pediatrics 90, 698702.CrossRefGoogle ScholarPubMed
Sattar, S. A., Raphael, R. A., Lochnan, H. & Springthorpe, V. S. (1983). Rotavirus inactivation by chemical disinfectants and antiseptics used in hospitals. Canadian Journal of Microbiology 29 14641469.CrossRefGoogle ScholarPubMed
Sattar, S. A., Lloyd-Evans, N., Springthorpe, V. S. & Nair, R. C. (1986). Institutional outbreaks of rotavirus diarrhoea: potential role of fomites and environmental surfaces as vehicles for virus transmission. Journal of Hygiene 96, 277289.CrossRefGoogle ScholarPubMed
Schurmann, W. & Eggers, H. J. (1983). Antiviral activity of an alcoholic hand disinfectant. Comparison of the in vitro suspension test with in vivo experiments on hands, and on individual fingertips. Antiviral Research 3, 2541.CrossRefGoogle ScholarPubMed
Snodgrass, D. R. & Herring, J. A. (1977). The action of disinfectants on lamb rotavirus. The Veterinary Record 101, 81.CrossRefGoogle ScholarPubMed
Suter, G. M. (1941). Relationships between the structure and bactericidal properties of phenols. Chemical Revieivs 28, 269299.CrossRefGoogle Scholar
Can, J. A. & Schnagl, R. D. (1981). Inactivation of a rotavirus by disinfectants. The Medical Journal of Australia 1, 1923.Google Scholar
Can, J. A. & Schnagl, R. D. (1983). Rotavirus inactivated byahypochlorite-based disinfectant: a reappraisal. The Medical Journal of Australia 3, 550.Google Scholar
Venman, W. M., Hinde, D., Feltham, S. & Gurwith, M. (1979). Rotavirus infection in adults. New England Journal of Medicine 301, 303306.Google Scholar
Villiams, F. P. (1985). Membrane associated viral complexes observed in stools and cell culture. Applied and Environmental Microbiology 50, 523526.CrossRefGoogle Scholar
Voode, G. N. & Bridger, J. C. (1975). Viral enteritis of calves. The Veterinary Record 96, 8588.Google Scholar
Vyatt, R. G., James, W. D., Bohl, E. H., Theil, K. W., Saif, L. J., Kalica, R., Greenberg, H. B., Kapikian, A. Z. & Chanock, R. M. (1980). Human rotavirus type 2 cultivation in vitro. Science 207, 189191.Google Scholar