Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T10:57:23.661Z Has data issue: false hasContentIssue false

Aspects of heat inactivation of foot-and-mouth disease virus in milk from intramammarily infected susceptible cows

Published online by Cambridge University Press:  15 May 2009

P. W. De Leeuw
Affiliation:
Central Veterinary Institute, Virology Department, 39 Houtribweg, 8221 RA Lelystad, The Netherlands
J. W. A. Tiessink
Affiliation:
Central Veterinary Institute, Virology Department, 39 Houtribweg, 8221 RA Lelystad, The Netherlands
J. G. Van Bekkum
Affiliation:
Central Veterinary Institute, Virology Department, 39 Houtribweg, 8221 RA Lelystad, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In skim milk obtained from susceptible cows after intramammary and intravenous inoculation (primary infected milk), foot-and-mouth disease (FMD) virus type 01 was slower inactivated by heat treatment than virus that had been added to pre-exposure skim milk.

Residual virus infectivity in heated primary infected milk was more efficiently detected in bovine thyroid cell cultures than in secondary pig kidney (PK2) cell cultures.

Untreated primary infected milk was found to inhibit both FMD-virus and vesicular stomatitis virus plaque formation in PK2 cells, suggesting the presence of interferon. The results of further tests confirmed that the interfering activity in unheated primary infected milk was indeed caused by an interferon.

Interferon excretion in primary infected milk was investigated using a series of milk samples from three cows. Maximum interferon titres were found after 24 h, coinciding with or shortly after the first virus excretion peak. The results are discussed with particular reference to the use of primary infected milk in studies of the thermal inactivation of FMD-virus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

References

REFERENCES

Anderson, E. C., Capstick, P. B., Mowat, G. N. & Leech, F. B. (1970). In vitro method for the safety testing of foot-and-mouth disease vaccines. Journal of Hygiene 68, 159.CrossRefGoogle ScholarPubMed
Bachrach, H. L., Breese, S. S., Callis, J. J., Hess, W. R. & Patty, R. E. (1957). Inactivation of foot-and-mouth disease virus by pH and temperature changes and by formalde hyde. Proceedings of the Society for Experimental Biology and Medicine 95, 147.CrossRefGoogle Scholar
Barteling, S. J., Meloen, R. H., Wagenaar, F. & Gielkens, A. L. J. (1979). Isolation and characterization of trypsin-resistant 01-variants of foot-and-mouth disease virus. Journal of General Virology 43, 383.CrossRefGoogle ScholarPubMed
Berman, B. & Vilcek, J. (1974). Cellular binding characteristics of human interferon. Virology 57, 378.CrossRefGoogle ScholarPubMed
Blackwell, J. H. & Hyde, J. L. (1976). Effect of heat on foot-and-mouth disease virus (FMDV) in the components of milk from FMDV-infected cows. Journal of Hygiene 77, 77.CrossRefGoogle ScholarPubMed
Burrows, R. (1968). Excretion of foot-and-mouth disease virus prior to the development of lesions. Veterinary Record 82, 387.Google Scholar
Burrows, R., Mann, J. A., Grieg, A., Chapman, W. G. & Goodridge, D. (1971). The growth and persistence of foot-and-mouth disease virus in the bovine mammary gland. Journal of Hygiene 69, 307.CrossRefGoogle ScholarPubMed
Cunliffe, H. R. & Blackwell, J. H. (1976). Survival of foot-and-mouth disease virus in casein and sodium caseinate produced from the milk of infected cows. Journal of Food Protection 40, 389.CrossRefGoogle Scholar
Dawson, P. S. (1970). The involvement of milk in the spread of foot-and-mouth disease: an epidemiological study. Veterinary Record 87, 543.CrossRefGoogle ScholarPubMed
Dhennin, L. & Labie, J. (1976). Thermorésistance du virus de la fièvre aphteuse dane le lait de vaches infectées. Bulletin de l'Académie Vétérinaire de France 49, 243.CrossRefGoogle Scholar
Frenkel, S. (1964). Modifications de la méthode de culture du virus aphteux selon Frenkel. Valeurs des vaccins selon les données du laboratoire. Bulletin de l'Office international des Epizooties 61, 985.Google Scholar
Gresser, I., Bandu, M. I., Brouty-Boye, D. & Tovey, M. (1974). Pronounced antiviral activity of human interferon on bovine and porcine cells. Nature 251, 543.CrossRefGoogle ScholarPubMed
Hedger, R. S. & Dawson, P. S. (1970). Foot-and-mouth disease virus in milk: An epidemio logical study. Veterinary Record 87, 186.CrossRefGoogle Scholar
Hyde, J. L., Blackwell, J. H. & Callis, J. J. (1975). Effect of pasteurization and evapo ration on foot-and-mouth disease virus in whole milk from infected cows. Canadian Journal of comparative Medicine 39, 305.Google Scholar
Kästli, P. & Moosbrugger, C. A. (1968). La destruction du virus aphteux par la chaleur dans les produits laitiers. Schweizer Archiv für Tierheilkunde 110, 89.Google Scholar
Lebailly, C. (1920). La virulence du lait dane la flèvre aphteuse. Compte rendu de l'Academie des Sciences, Paris 171, 373.Google Scholar
Leeuw, P. W. de, Bekkum, J. G. van & Tiessink, J. W. A. (1978). Excretion of foot-and- mouth disease virus in oesophageal–pharyngeal fluid and milk of cattle after intranasal infection. Journal of Hygiene 81, 415.CrossRefGoogle ScholarPubMed
Levine, S. (1964). Effect of actinomycin D and puromycin dihydrochloride on action of interferon. Virology 24, 586.CrossRefGoogle ScholarPubMed
Lockart, R. Z. (1973). Criteria for acceptance of a viral inhibitor as an interferon and a general description of the biological properties of known interferons. In: Interferon and Interferon Inducers (ed. Finter, N. B). Amsterdam, London: North Holland.Google Scholar
Matthews, T. H. J., Lawrence, M. K., Nair, C. D. G. & Tyrrel, D. A. J. (1976). Antiviral activity in milk of possible clinical importance. Lancet ii, 1387.CrossRefGoogle Scholar
McVicar, J. W. & Sutmoller, P. (1976). Growth of foot-and-mouth disease virus in the upper respiratory tract of non-immunized, vaccinated and recovered cattle after intranasal inoculation. Journal of Hygiene 76, 467.CrossRefGoogle ScholarPubMed
Nagono, Y. & Maeharsa, N. (1975). Virus-inhibiting factor or interferon activity on heterologous animal cells. Japanese Journal of Microbiology 19, 447.CrossRefGoogle Scholar
Plowbight, W. & Ferris, R. D. (1961). The preparation of bovine thyroid monolayers for use in virological investigations. Research in Veterinary Science 2, 149.CrossRefGoogle Scholar
Rinaldo, C. R., Isackson, B. W., Overall, J. C., Glasgow, L. A., Brown, T. T., Bistner, S. I., Gillespie, J. H. & Scott, F. W. (1976). Fetal and adult bovine interferon production during bovine viral diarrhea virus infection. Infection and Immunity 14, 660.CrossRefGoogle ScholarPubMed
Sellers, R. F. (1969). Inactivation of foot-and-mouth disease virus in milk. British Veterinary Journal 125, 163.CrossRefGoogle ScholarPubMed
Stern, J. A., Herlin, M. A. & Proctor, B. E. (1952). An electronic method for continuous determination of rapid temperature changes in thermal death-time studies. Food Research 17, 460.CrossRefGoogle Scholar
Wittmann, G. (1964). Die Interferenz zwischen inaktiviertem und aktivem Maul-mid-Klauenseuche-virus in Gewebekulturen. Ihre Bedeutung für die Unschädlichkeitsprüfung von Formalinvakzinen. Zentralblatt für Veterinär Medizin B 11, 135.CrossRefGoogle Scholar