Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T16:48:54.894Z Has data issue: false hasContentIssue false

The antibacterial activity of chloroxylenol in combination with ethylenediaminetetra-acetic acid

Published online by Cambridge University Press:  15 May 2009

J. Dankert
Affiliation:
Laboratory of Medical Microbiology and Hospital Epidemiology, University of Groningen, Groningen, The Netherlands
I. K. Schut
Affiliation:
Laboratory of Medical Microbiology and Hospital Epidemiology, University of Groningen, Groningen, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The bactericidal activity of RBA 777 has been found to vary with both the cultural and environmental test conditions against Pseudomonas aeruginosa and to a lesser extent against Staphylococcus aureus. These variations may explain certain anomalies in earlier work regarding the activity of chloroxylenol-based products. The addition of EDTA to RBA 777 has brought about an improvement in the performance against P. aeruginosa and this activity is confirmed in vivo. Previous reports have already illustrated this potential and the evaluations of the new antibacterial agent DA 136 confirms and extends these results to its performance under adverse conditions, often associated with the hospital environment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

References

REFERENCES

Ayliffe, G. A. J., Collins, B. J. & Lowbury, E. J. L. (1966). Cleaning and disinfection of hospital floors. British Medical Journal ii, 442–5.CrossRefGoogle Scholar
Bassett, D. C. J. (1970). Wound infection with Pseudomonas multivorans A water-borne contaminant of disinfectant solution. Lancet i, 1188–91.CrossRefGoogle Scholar
Beath, T. (1943). The suppression of infection in recent wounds by the use of antiseptics. Surgery 13, 667–76.Google Scholar
Boyce, J. M. H. & Meddick, H. M. (1974). Disinfectant contamination. British Medical Journal i, 38.CrossRefGoogle Scholar
Brown, M. R. W. (1971). In Inhibition and Destruction of the Microbial Cell (ed. Hugo, W.), pp. 307367. London: Academic Press.CrossRefGoogle Scholar
Brown, M. R. W. & Melling, J. (1969 a). Loss of sensitivity to EDTA by Pseudomonas aeruginosa grown under conditions of Mg-limitation. Journal of General Microbiology 54, 439–44.CrossRefGoogle Scholar
Brown, M. R. W. & Melling, J. (1969 b). Role of divalent cations in the action of polymyxin B and EDTA on Pseudomonas aeruginosa. Journal of General Microbiology 59, 263–74.CrossRefGoogle ScholarPubMed
Brown, M. R. W. & Richards, R. M. E. (1965). Effect of ethylene diamine tetracetate on the resistance of Pseudomonas aeruginosa to antibacterial agents. Nature, London 207, 1391–3.CrossRefGoogle Scholar
Burdon, D. W. & Whitby, J. L. (1967). Contamination of hospital disinfectants with Pseudomonas species. British Medical Journal ii, 153–5.CrossRefGoogle Scholar
Calman, R. M. & Murray, J. (1956). Antiseptics in midwifery. British Medical Journal ii, 200204.CrossRefGoogle Scholar
Colebrook, L. (1941). Disinfection of the skin. Bulletin of War Medicine 2, 73–9.Google Scholar
Colebrook, L. & Maxted, W. R. (1933). Antiseptics in midwifery. Journal of Obstetrics and Gynaecology of the British Empire 40, 966–90.CrossRefGoogle Scholar
Cook, A. M. & Wills, B. A. (1958). The use of stored suspension of Escherichia coli I in the evaluation of bactericidal action. Journal of Applied Bacteriology 21, 180–87.CrossRefGoogle Scholar
Cowan, S. T. & Steel, K. J. (1965). Manual for the Identification of Medical Bacteria. CambridgeUniversity Press.Google Scholar
Cowen, R. A. (1974). Relative merits of ‘in-use’ and laboratory methods for the evaluation of antimicrobial products. Journal of the Society of Cosmetics and Chemistry 25, 307–23.Google Scholar
Eagon, R. G. & Carson, K. J. (1965). Lysis of cell walls and intact cells of Pseudomonas aeruginosa by ethylenediamine tetra acetic acid and by lysozyme. Canadian Journal of Microbiology 11, 193201.CrossRefGoogle Scholar
Feisal, E. V. & Bennett, E. O. (1961). The effect of water hardness on the growth of Pseudomonas aeruginosa in metal cutting fluids. Journal of Applied Bacteriology 24, 125–30.CrossRefGoogle Scholar
Gilleland, H. E., Jr. Stinnett, J. D. & Eagon, R. G. (1974). Ultrastructural and chemical alteration of the cell envelope of Pseudomonas aeruginosa associated with resistance to ethylenediaminetetracetate resulting from growth in a Mg2+-deficient medium. Journal of Bacteriology 117, 302–11.CrossRefGoogle Scholar
Gillies, R. R. & Govan, J. R. W. (1966). Typing of Pseudomonas pyocyanea by pyocine production. Journal of Pathology and Bacteriology 91, 339–45.CrossRefGoogle ScholarPubMed
Gray, G. W. & Wilkinson, S. G. (1965 a). The action of ethylenediaminetetra-acetic acid on Pseudomonas aeruginosa. Journal of Applied Bacteriology 28, 153–64.CrossRefGoogle Scholar
Gray, G. W. & Wilkinson, S. G. (1965 b). The effect of ethylenediaminetetra-acetic acid on the cell walls of some Gram-negative bacteria. Journal of General Microbiology 39, 385–99.CrossRefGoogle Scholar
Haque, H. & Russell, A. D. (1974). Effect of ethylenediaminetetra-acetic acid and related chelating agents on whole cells of gram-negative bacteria. Antimicrobial Agents and Chemotherapy 5, 447.CrossRefGoogle Scholar
Hare, R., Raik, E. & Gash, S. (1963). Efficiency of antiseptics when acting on dried organisms. British Medical Journal i, 496500.CrossRefGoogle Scholar
Hatch, E. & Cooper, P. (1948). Sodium hexametaphosphate in emulsions of Dettol for obstetric use. Pharmaceutical Journal 161, 198–9.Google Scholar
Hugo, W. B. & Stretton, R. J. (1966). The role of cellular lipid in the resistance of Grampositive bacteria to penicillins. Journal of General Microbiology 42, 133–8.CrossRefGoogle ScholarPubMed
Hugo, W. B. & Franklin, I. (1968). Cellular lipid and the antistaphylococcal activity of phenols. Journal of General Microbiology 52, 365–73.CrossRefGoogle Scholar
Kuipers, J. S. (1968). Investigation and treatment of floors of patients' rooms: a study with an agar cylinder. Journal of Hygiene 66, 625–31.Google ScholarPubMed
Kuipers, J. S. & Dankert, J. (1970). Bactericidal properties of Tego 103 S and Tego 103 G. Journal of Hygiene 68, 343–8.CrossRefGoogle Scholar
Lowbury, E. J. L. (1951). Contamination of cetrimide and other fluids with Pseudomonas pyocyanea. British Journal of Industrial Medicine 8, 22–5.Google Scholar
Myers, J. A. (1968). Disinfectants and antiseptics. Pharmaceutical Journal 200, 276–7.Google Scholar
Nakamura, H., (1967). Changes in sensitivity to acriflavine of Escherichia coli grown in media of different glucose contents. Journal of General Microbiology 49, 443–9.CrossRefGoogle Scholar
Repaske, R. (1958). Lysis of Gram-negative organisms and the role of versene. Biochimica et biophysica acta 30, 225–32.CrossRefGoogle ScholarPubMed
Reybrouck, G. & Van de Voorde, G. H. (1969). Effect of ethylenediamine tetraacetate on the germicidal action of disinfectants against Pseudomonas aeruginosa. Acta clinica belgica 24, 3241.CrossRefGoogle ScholarPubMed
Russell, A. D. (1974). Factors influencing the activity of antimicrobial agents, an appraisal. Microbios 10, 151–74.Google ScholarPubMed
Smith, G. (1970). Ethylenediamine tetra-acetic acid and the bactericidal efficiency of some phenolic disinfectants against Pseudomonas aeruginosa. Journal of Medical Laboratory Technology 27, 203–6.Google ScholarPubMed
Ten Cate, L. (1965). A note on a simple and rapid method of bacteriological sampling by means of agar sausages. Journal of Applied Bacteriology 28, 221–3.CrossRefGoogle ScholarPubMed
Webb, M. (1949). The influence of magnesium on cell division. 3. The effect of magnesium on the growth of bacteria in simple chemically defined media. Journal of General Microbiology 3, 418–24.CrossRefGoogle ScholarPubMed