Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T18:38:07.993Z Has data issue: false hasContentIssue false

The anaerobic cocci: gas formation, fermentation reactions, sensitivity to antibiotics and sulphonamides. Classification

Published online by Cambridge University Press:  15 May 2009

Ronald Hare
Affiliation:
The Departments of Bacteriology and Biochemistry, St Thomas's Hospital Medical School, London, S.E.1.
Peter Wildy
Affiliation:
The Departments of Bacteriology and Biochemistry, St Thomas's Hospital Medical School, London, S.E.1.
F. S. Billett
Affiliation:
The Departments of Bacteriology and Biochemistry, St Thomas's Hospital Medical School, London, S.E.1.
D. N. Twort
Affiliation:
The Departments of Bacteriology and Biochemistry, St Thomas's Hospital Medical School, London, S.E.1.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A total of ninety-nine strains of anaerobic cocci from human beings have been studied and six groups demarcated on the basis of gas formation and fermentation reactions.

2.Gas formation by strains of group I is due to fermentation of glucose, laevu-lose or maltose, with a sulphur compound as an activator and with the production of gas rich in CO2.

3.Gas formation by strains of groups II, III and V is due to fermentation of different organic acids, sulphur not being required, and accompanied by the production of gases containing a high proportion of H2.

4.Two groups, IV and VI, do not from gas, but the latter has marked fermentation abilities.

There is correlation between microscopic apperances, probable pathogenicity, sensitivity to antibiotics and sulphonamides and the groups demarcated.

Ninety-two out of ninety-nine strains isolated from human beings could be placed in one or other group.

We are greatly indebted to Dr H. J. Parish of the Wellcome Research Laboratories for a sample of Polymyxin E, to Prof. L. Young for much assistance and advice and to those colleagues, particularly Dr R. M. Caiman of Queen Charlotte's Hospital, who sent us strains.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1952

References

REFERENCES

Adamson, R. S. (19181919). J. Path. Bact. 22, 345.CrossRefGoogle Scholar
Barber, M., Brooksbank, B. W. L., & Kuper, S. W. A. (1951). J. Path. Bact. 63, 57.CrossRefGoogle Scholar
Barron, E. S. G., & Singer, T. P. (1945). J. biol. Chem. 157, 221.CrossRefGoogle Scholar
Benstead, J. G. (1950). Lancet, 1, 206.CrossRefGoogle Scholar
Bergey, D. H. (1948). Manual of Determinative Bacteriology, 6th ed.London: Bailliére, Tindall and Cox.Google Scholar
Bolognesi, G. (1907). Zbl. Bakt. (1 Abt. Orig.), 43, 113.Google Scholar
Bray, J., & King, E. J. (1942). J. Path. Bact. 84, 287.Google Scholar
Bray, J., & King, E. J. (1943). J. path. Bact. 55, 315.CrossRefGoogle Scholar
Brown, K. C., & Kirwan, E. W. O'G. (19141915). Ind. j. med. Res. 2, 763.Google Scholar
Cardon, B. P., & Barker, H. A. (1947). Arch. Bioch. 12, 165.Google Scholar
Choukevitch, J. (1911). Ann. Inst. Pasteur, 25, 345.Google Scholar
Clark, W. M. (1928). The Determination of Hydrogen Ions, 3rd ed.Baltimore: Williams and Wilkins.Google Scholar
Colebrook, L. (1930). Brit. med. J. 2, 134.CrossRefGoogle Scholar
Colebrook, L., & Hare, R. (1933). J. Obstet. Gynaec. 40, 609.Google Scholar
Distaso, A. (1912). zbl. Bakt. (1. Abt. Orig.), 62, 433.Google Scholar
Donovick, R., & Rake, G. (1946). Proc, soc. Exp. Biol. N. Y., 61, 224.CrossRefGoogle Scholar
Douglas, H. C. (1950). J. dent. Res. 29, 2.CrossRefGoogle Scholar
Fleming, A. (1915). Lancet, 2, 638.CrossRefGoogle Scholar
Foubert, E. L., & Douglas, H. C.. (1948). J. Bact. 56, 25.CrossRefGoogle Scholar
GrÄf, E. L., & Witneben, H. C.(1907). Zbl. Bakt. 44, 97.Google Scholar
Grigoroff, . (1905). Thése de Genéve. Quoted from Bergey, 1948.Google Scholar
Hall, I. C. (1930). J. Bact. 20, 407.CrossRefGoogle Scholar
Hall, I. C., & Howitt, B. (1925). J. infect. Dis. 37, 112.CrossRefGoogle Scholar
Hare, R., & Colebrook, L. (1934). J. Path. Bact. 39, 429.CrossRefGoogle Scholar
Harper, G. J., & Cawston, W. C. (1945). J. Path. Bact. 57, 59.CrossRefGoogle Scholar
Harris, J. W., & Brown, J. H. (1929). Johns Hopk. Hosp. Bull. 44, 1.Google Scholar
Johns, A. T. (1951). J. gen. Microbiol. 5, 317, 326.CrossRefGoogle Scholar
Jungano, M. (1907). C.R. Soc. Biol. paris,, 62, 707.Google Scholar
Krönig, (1895). Zbl. Gynäk. 19, 409.Google Scholar
Lewkowicz, X. (1901). Arch. Méd. exp. 13, 633.Google Scholar
MaLennan, J. D. (1943). Lancet, 2, 63, 94.CrossRefGoogle Scholar
McLeod, J. N., Mayr-Harting, A., & Walker, N. (1944). J. Path. Bact. 56, 377.CrossRefGoogle Scholar
Magrassi, F. (1946). Boll. Soc. ital. biol. sper. 21, 101.Google Scholar
Manual of methods for pure culture study of bacteria (1946). Geneva and N.Y.Google Scholar
Natvig, H. (1905). Arch. Gynäk. 76, 700.CrossRefGoogle Scholar
PrÉvot, A. R. (1924). C. R. Soc. Biol. paris,, 91, 426.Google Scholar
PrÉvot, A. R. (1925). Ann. Inst. pasteur, 39, 417.Google Scholar
PrÉvot, A. R. (1933). Ann. Sci. nat.(Bot.), 15, 25.Google Scholar
PrÉvot, A. R. (1941). C.R. Soc. Biol. paris, 135, 105, 103.Google Scholar
PrÉvot, A. R. (1948). Manuel de classification et de Determination des Bacteries anaerobies. Paris: Masson.Google Scholar
PrÉvot, A. R. (1950). Private communication.Google Scholar
PrÉvot, A. R., & Senez, J. (1944).,C.R. Soc. Biol. paris, 138, 35Google Scholar
PrÉvot, A. R., & Loth, R. (1941). Ann. Ferment. 6, 76.Google Scholar
PrÉvot, A. R., & Taffanel, J. (1942 a). Ann. Ferment. 7, 65.Google Scholar
PrÉvot, A. R., & Taffanel, J. (1942 b). C.R. Soc. Biol., paris, 136, 451, 480.Google Scholar
Quastel, J. H.,& Wheatley, A. M. M. (1932). Biochem. J. 26, 2169.CrossRefGoogle Scholar
Repaci, G. (1910). C.R. Soc. Biol., paris, 68, 292.Google Scholar
SchottmÜller, H. (1910). Mitt. Grenzgeb. Med chir. 21, 450.Google Scholar
SchottmÜller, H. (1912). Zbl. Bakt. (1,.Abt. Orig.), 64, 270.Google Scholar
SchottmÜller, H. (1928). Maunch. med. wschr. 75, 1580, 1634.Google Scholar
Schwarz, H. O., & Dieckmen, W. J. (1927). Amer. J. Obstet. Gynaec. 13, 467.CrossRefGoogle Scholar
Stone, M. L. (1940). J. Bact. 39, 559.CrossRefGoogle Scholar
sutton, J. C. (1938). J. Sci. Inst. 15, 133.CrossRefGoogle Scholar
Tissier, H. (1926). C.R. Soc. Biol., Paris, 94, 446.Google Scholar
Tunnicliff, R. (1917). J. Amer. med. Ass. 68, 1028.CrossRefGoogle Scholar
Veillon, M. A., (1893). C.R. Soc. Biol., Paris, 5, 807.Google Scholar
Veillon, M. A., Zuber, (1898). Arch. Med. exp. 10, 517.Google Scholar
Weinberrg, M., Nativelle, R., & PrÉvot, A. R. (1937). Les Microbes anaerobies. paris, Masson.Google Scholar
Weiss, C., & Mercado, D. G. (1938). J. Infect. Dis. 62, 181.CrossRefGoogle Scholar
Whiteley, H. R. & Douglas, H. C.(1951).J. Bact. 61, 605.CrossRefGoogle Scholar