Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T12:49:57.222Z Has data issue: false hasContentIssue false

An investigation of the merits of ozone as an aerial disinfectant

Published online by Cambridge University Press:  15 May 2009

William J. Elford
Affiliation:
National Institute for Medical Research, Hampstead, N.W. 3
Joan van den Ende
Affiliation:
National Institute for Medical Research, Hampstead, N.W. 3
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The question formulated in the introduction to this report can now be answered. Ozone in tolerable concentration is able to inactivate certain bacteria when these are present as unprotected singleton aerosol particles in atmospheres of 60–90% R.h. When such bacteria are covered with a protective coating of organic matter, however, as in aerosols naturally emitted during a sneeze or cough, then ozone in permissible concentration is without significant effect. Inactivation of such protected organisms can only be achieved by the use of ozone in decidedly higher concentrations, which must be deemed dangerous for prolonged spells of breathing. Bacteria that have settled on surfaces are generally more resistant to ozone than when in newly formed aerosols. Hence experimental evidence leads to the conclusion that ozone, in concentrations that can be breathed over long periods without irritation, cannot be expected to provide any effective protection against air-borne bacterial infection, through direct inactivation of the infectious carrier particles.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1942

References

REFERENCES

Baker, A. H., & Twort, C. C., (1941). J. Hyg., Camb., 41, 117.CrossRefGoogle Scholar
Bourdillon, R. B., Lidwell, O. M., & Thomas, J. C., (1941). J. Hyg., Camb., 41, 197.CrossRefGoogle Scholar
Edgar, J. L., & Paneth, F. A., (1941). J. Chem. Soc. p. 519.CrossRefGoogle Scholar
Franklin, M. W. (1914). Trans. Fourth Int. Congr. School Hygiene, N.Y., 1913, p. 346.Google Scholar
Glover, R. E., (1941). Brit. J. Exp. Path. 22, 98.Google Scholar
Guŕron, G., Prettre, M., & Guéron, J., (1936). Bull. Soc. chim. Fr. 5th Series 3, 295.Google Scholar
Haines, R. B., (1935). Rep. Food Invest. Bd., p. 30.Google Scholar
Hartman, F. E. (1925). J. Amer. Soc. Heat. Vent. Engrs, 31, 33.Google Scholar
Henderson, Y., & Haggard, H. W., (1927). Noxious Gases, p 136Chem. Cat. Co., N.Y.Google Scholar
Hill, L., & Flack, M., (1912). Proc. Roy. Soc. B, 84, 404.Google Scholar
Jordan, E. O., & Carlson, A. J., (1913). J. Amer. Med. Ass. 61, 1007.CrossRefGoogle Scholar
Kirstein, F., (1900). Z. Hyg. InfektKr. 35, 123.Google Scholar
Kirstein, F. (1902). Z. Hyg. InfektKr. 39, 93.CrossRefGoogle Scholar
Konrich, (1913). Z. Hyg. InfektKr. 73, 443.CrossRefGoogle Scholar
Ladenburg, A., & Quasig, R., (1901). Ber. dtsch. chem, Ges. 34, 1184.CrossRefGoogle Scholar
La Towsky, L. W., MacQuiddy, E. L., & Tollman, J. P., (1941). J. Industr. Hyg. Toxicol. 23, 129.Google Scholar
Lehmann, K., & Hasegawa, (1913). Arch. Hyg. 77, 323.Google Scholar
Letts, E. A., & Rea, F. W., (1914). J. Chem. Soc. 105, 1157.CrossRefGoogle Scholar
Masterman, A. T., (1941). J. Hyg., Camb., 41, 44.CrossRefGoogle Scholar
Oettingen, W. F. von, (1941). U.S. Public Health Bulletin, No. 272: Washington.Google Scholar
Olsen, J. C., (1914). Trans. Fourth Int. Congr. School Hygiene, N.Y., 1913, p. 306.Google Scholar
Olsen, J. C., & Ulrich, W. H., (1914). J. Industr. Engng Chem., 6, 619.CrossRefGoogle Scholar
Paneth, F. A., & Glückauf, E., (1941). Nature, Lond., 147, 614.CrossRefGoogle Scholar
Reinberger, P., & Bailley, J., (1940). C.R. Acad. Sci., Paris., 210, 683.Google Scholar
Riesbeck, E. N., (1939). Air Conditioning, Goodheart-Wilcox Chicago.Google Scholar
Sawyer, W. A., Beckwith, H. L. & Skolfebld, E. M., (1913). J. Amer. Med. Ass., 61, 1013.CrossRefGoogle Scholar
Thorp, C. E., (1941). News Edition Amer. Chem. Soc., 19, 686.Google Scholar
Usher, F. L., & Rao, B. S., (1917). J. Chem. Soc. 111, 799.CrossRefGoogle Scholar
Wells, F. W., (1940). J. Franklin Inst. 229, 347.CrossRefGoogle Scholar
Wells, W. F., (1934). Amer. J. Hyg. 20, 611.Google Scholar
Wells, W. F., & Riley, E. C., (1937). J. Industr. Hyg. Toxicol. 19, 513.Google Scholar
Wells, W. F., & Wells, M. W., (1936). J. Amer. Med. Ass. 107, 1698; 1805.CrossRefGoogle Scholar
Williams, H. G., & Hartgraves, T. A., (1939). J. Lab. Clin. Med. 25, 257.Google Scholar
Witheridge, & Yaglou, (1939). Trans. Amer. Soc. Heat. Vent. Engrs, 45, 509.Google Scholar
Wulliémoz, C., (1938). Rev. méd. Suisse rom. 58, 761.Google Scholar