Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T10:53:31.189Z Has data issue: false hasContentIssue false

An Investigation of the Laws of Disinfection

Published online by Cambridge University Press:  15 May 2009

Harriette Chick
Affiliation:
Jenner Research Student, Lister Institute of Preventive Medicine.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A very complete analogy exists between a chemical reaction and the process of disinfection, one reagent being represented by the disinfectant, and the second by the protoplasm of the bacterium.

2. Three classes of disinfectants were studied, (a) metallic salts (HgCl2 and AgNO3), (b) phenol, and (c) emulsified disinfectants (disinfectant “A”). B. paratyphosus and spores of B. anthracis were chosen as types of vegetative and spore-bearing organisms respectively.

3. In the case of anthrax spores, the disinfection process proceeds in obedience to the well-known equation for a unimolecular reaction, if numbers expressing “concentration of reacting substance” are replaced by “numbers of surviving bacteria”.

4. Experiments with B. paratyphosus show a departure from the simple law owing to permanent differences in resistance to disinfectants among the individual organisms. The younger bacteria were proved to be the more resistant.

5. The process of disinfection is influenced by temperature in an orderly manner, and the well-known equation of Arrhenius can be applied.

(a) Disinfection of B. paratyphosus by metallic salts is influenced by temperature to about the same degree as most chemical reactions, the reaction velocity being increased about three-fold for a rise in temperature of 10°C.

(b) For disinfection of B. paratyphosus by phenol and the disinfectant “A” there was a much higher temperature coefficient, viz., seven to eight. In the case of phenol the effect of temperature was again found to be complicated by the want of uniformity among the individual bacteria. Disinfection of the younger, more resistant bacteria, was found to possess a higher temperature coefficient than that of the less resistant forms, the coefficient varying from ten to three, or two according to the age and number of the bacteria disinfected.

6. It follows from (5) that there is a very great advantage in the use of warm solutions for practical disinfection.

7. Experiments, made with varying concentrations of disinfectant, and using similar groups of bacteria from cultures of B. paratyphosus, showed a definite logarithmic relation, between the concentration of disinfectant and the mean reaction velocity of disinfection, to exist in the case of phenol and the disinfectant “A”.

8. In the case of silver nitrate, the same relation existed, but, in the case of mercuric chloride, numbers representing concentration of the salt had to be replaced by those representing concentration of the metallic ion. This confirms the theory that in disinfection with metallic salts the metallic ion is the real disinfecting agent.

9. This logarithmic relation is surprising in view of the simple proportionality existing in the case of chemical processes running the course of a unimolecular reaction, with which disinfection shows a close analogy.

10. Some evidence was obtained that, in disinfection with mercuric chloride, a toxic compound is formed between the metal and the substance of the bacterial cell. This compound prevents all further growth, but vitality can be restored by the administration of a large excess of soluble sulphide as an antidote.

I am glad to have this opportunity of expressing my great indebtedness to Dr C. J. Martin, at whose suggestion the work was undertaken, and who has helped me throughout, not only with most valuable advice, but also with practical assistance in many of the experiments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1908

References

Ballner, (1902). Experimentelle Studien über die Desinfectionskraft gesättigter Wasserdämpfe bei verschiedenen Siedetemperaturen. Sitzungsber. d. kaiserl. Akad. d. Wissensch. Wien, vol. CXI. Abt. 3, p. 97.Google Scholar
Behring, (1890). Ueber Desinfection, Desinfectionsmittel und Desinfections-methoden. Zeitschr. f. Hygiene, vol. IX. p. 396.Google Scholar
Bellei, (1904). Verbesserte Methode zur Bestimmung des Werthes von chemischen Desinfectionsmitteln. Münch. med. Wochenschr., No. 7, 1904.Google Scholar
Bial, (1897). Ueber den Mechanismus der Gasgährungen im Magensafte. Archiv f. experiment. Path. u. Pharm., vol. XXXVIII. p. 1.Google Scholar
Bial, (1902). Antiseptische Function des H-ions verdünnter Säuren. Zeitschr. f. phys. Chem., vol. XL. p. 513.CrossRefGoogle Scholar
Brooks, (1906). Temperature and Toxic Action. Botanical Gazette, Nov. 1906.CrossRefGoogle Scholar
Buchholtz, (1875). Antiseptica und Bakterien. Archiv f. experiment. Path. u. Pharm., vol. IX. p. 1.Google Scholar
Croix, De La (1881). Das Verhalten der Bakterien des Fleischwassers gegen einige Antiseptica. Archiv f. experiment. Path. u. Pharm., vol. XIII. p. 175.CrossRefGoogle Scholar
Dreser, (1893). Zur Pharmakologie des Quecksilbers. Archiv f. experiment. Path. u. Pharm., vol. XXXII. p. 456.CrossRefGoogle Scholar
Esmarch, (1887). Das Creolin. Centralbl. f. Bakteriologie, I Abt., vol. II. pp. 295 and 329.Google Scholar
Fraenkel, (1889). Die desinficienden Eigenschaften der Kresole, ein Beitrag zur Desinfectionsfrage. Zeitschr. f. Hygiene, vol. VI. p. 521.Google Scholar
Geppert, (1889). Zur Lehre von dem Antisepticis. Berl. klin. Wochenschr., 1889, pp. 789 and 819.Google Scholar
Geppert, (1891). Zur Desinfectionsfrage. Deutsch. med. Wochenschr., No. 25, pp. 797, 829 and 855.CrossRefGoogle Scholar
Heider, (1892). Ueber die Wirksamkeit der Desinfectionsmittel bei erhöhter Temperatur. Archiv f. Hygiene, vol. XV. p. 341.Google Scholar
Henle, (1889). Ueber Creolin und seine wirksamen Bestandtheile. Archiv f. Hygiene, vol. IX. p. 188.Google Scholar
Kahlenberg, (1901). The Theory of Electrolytic Dissociation as viewed in the light of facts recently ascertained. Journ. of Phys. Chem., vol. V. p. 349.Google Scholar
Koch, (1881). Ueber Desinfection. Mittheil. a. d. kaiserl. Gesundheitsamte, vol. I.Google Scholar
Krönig, and Paul, (1897). Die chemischen Grundlagen der Lehre von der Giftwirkung und Desinfection. Zeitschr. f. Hygiene, vol. XXV. p. 1.Google Scholar
Ikéda, (1897). Die chemischen Grundlagen der Lehre von der Giftwirkung und Desinfection. Zeitschr. f. Hygiene, vol. XXV. p. 95.Google Scholar
Luther, (1904). Die Hydrolyse des Quecksilberchlorids. Zeitschr. f. physik. Chem., vol. XLVII. p. 107.CrossRefGoogle Scholar
Madsen, and Nyman, (1907). Zur Theorie der Desinfektion. Zeitschr. f. Hygiene, LVII. p. 388.CrossRefGoogle Scholar
Meyer, (1906). Notiz über eine der supramaximalen Tötungszeiten betreffende Gesetzmässigkeit. Ber. d. deutsch. bot. Gesellsch., vol. XXIV.Google Scholar
Paul, and Prall, (1907). Die Werthbestimmung von Desinfectionsmittel mit Staphylococcen die bei der Temperatur der flüssigen Luft aufbewahrt wurden. Arbeit. aus dem kaiserl. Gesundheitsamte, vol. XXVI. p. 73.Google Scholar
Rideal, and Walker, (1903). The Standardisation of Disinfectants. Journ. of the Roy. San. Inst., vol. XXIV. p. 424.Google Scholar
Spiro, and Burns, (1898). Zur Theorie der Desinfection. Archiv f. experiment. Path. u. Pharm., vol. XLI. p. 355.CrossRefGoogle Scholar
Winslow, and Lockridge, (1906). Toxic effect of certain acids upon typhoid and colon bacilli in relation to their degree of dissociation. Journ. of Infectious Diseases, vol. III. p. 547.CrossRefGoogle Scholar