Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T15:51:44.626Z Has data issue: false hasContentIssue false

An in vitro comparison of the effect of some antibacterial, antifungal and antiprotozoal agents on various strains of Mycoplasma (pleuropneumonia–like organisms: P.P.L.O.)

Published online by Cambridge University Press:  15 May 2009

Audrey G. Newnham
Affiliation:
Department of Animal Pathology, School of Veterinary Medicine, Madingley Road, Cambridge
H. P. Chu
Affiliation:
Department of Animal Pathology, School of Veterinary Medicine, Madingley Road, Cambridge
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A study was made in liquid medium over 7 days at 37° C. of the inhibitory action of nineteen antibacterial, antifungal and antiprotozoal drugs on twenty strains of M. gallisepticum, eight other avian mycoplasmata, six mammalian mycoplasmata, two saprophytic mycoplasmata and the L-form of Streptobacillus moniliformis (L–1).

The twenty strains of M. gallisepticum from Britain and other countries showed a similar range of drug sensitivity except where resistant strains were included. Tylosin and demethylchlortetracycline appeared to have the highest inhibitory action, followed by erythromycin, spiramycin, tetracycline, chlortetracycline, oxytetracycline and ethidium bromide. A ‘Zone Phenomenon’ frequently occurred with sodium aurothiomalate, inhibition often being observed between 0·1 and 2·0 μg./ml. Polymixin and nystatin had no inhibitory effect on the growth of any mycoplasmata tested. With the exception of erythromycin and streptomycin in some cases, the pattern of sensitivity observed with the mycoplasmata of diverse origin was similar to that of M. gallisepticum, most strains, however, being somewhat more resistant than M. gallisepticum to many of the drugs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

References

Adler, H. E. (1964). A comparison of some characteristics of Mycoplasma mycoides var. mycoides and Mycoplasma gallisepticum. Amer. J. vet. Res. 25, 243–5.Google ScholarPubMed
Adler, H. E. & Yamamoto, R. (1956). Preparation of a new pleuropneumonia-like organism antigen for the diagnosis of chronic respiratory disease by the agglutination test. Amer. J. vet. Res. 17, 290–3.Google ScholarPubMed
Adler, H. E., Yamamoto, R. & Cordy, D. R. (1956). The effect of certain antibiotics and arsenicals in inhibiting growth of pleuropneumonia-like organisms isolated from goats and sheep. Cornell Vet. 46, 206–16.Google Scholar
Adler, H. E. & Yamamoto, R. (1957). Pathogenic and nonpathogenic pleuropneumonia-like organisms in infectious sinusitis of turkeys. Amer. J. vet. Res. 18, 655–60.Google ScholarPubMed
Blyth, W. A. (1958). An investigation into the aetiology of non-gonococcal urethritis with special reference to the role of pleuropneumonia-like organisms. Thesis for the Degree of Doctor of Philosophy, University of London.Google Scholar
Calnek, B. W. & Levine, P. P. (1957). Studies on experimental egg-transmission of pleuropneumonia-like organisms in chickens. Avian Dis. 1, 208–21.CrossRefGoogle Scholar
Carski, T. R. & Shepard, C. C. (1961). Pleuropneumonia-like (Mycoplasma) infections in tissue culture. J. Bact. 81, 626–45.CrossRefGoogle ScholarPubMed
Chu, H. P. (1954). The identification of infectious coryza associated with Nelson's coccobacilliform bodies in fowls in England and its similarity to the chronic respiratory disease of chickens. Proc. Xth World Poultry Congr., Edinburgh, II, 246.Google Scholar
Chu, H. P. & Newnham, A. G. (1959). What is chronic respiratory disease of chickens (C.R.D.)? Proc. XVIth Int. Vet. Congr., Madrid, 1, 163–93.Google Scholar
Collier, L. H. (1957). Contamination of stock lines of human carcinoma cells by pleuropneumonia-like organisms. Nature, Lond., 180, 757–8.CrossRefGoogle ScholarPubMed
Cook, J. K. A. & Inglis, J. M. (1964). Comparison of in vitro activity of spiramycin and erythromycin against Mycoplasma gallisepticum. J. comp. Path. 74, 101–7.Google Scholar
Cook, J. K. A., Inglis, J. M. & Parker, W. G. C. (1963). Spiramycin adipate in the treatment of mycoplasmosis in turkeys. Vet. Rec. 75, 215–18.Google Scholar
Dafaalla, E. N. (1961). Solid media for the growth of Asterococcus mycoides. J. comp. Path. 71, 259–67.CrossRefGoogle ScholarPubMed
Domermuth, C. H. (1958). In vitro resistance of avian PPLO to antibacterial agents. Avian Dis. 2, 442–9.CrossRefGoogle Scholar
Domermuth, C. H. (1960). Antibiotic resistance and mutation rates of Mycoplasma: Avian Dis. 4, 456.CrossRefGoogle Scholar
Domermuth, C. H. & Johnson, E. P. (1955). An in vitro comparison of some anti-bacterial agents on a strain of avian pleuropneumonia-like organisms. Poult. Sci. 34, 1395–9.CrossRefGoogle Scholar
Eaton, M. D. (1950). Action of aureomycin and Chloromycetin on the virus of primary atypical pneumonia. Proc. Soc. exp. Biol., N.Y., 73, 24–9.CrossRefGoogle ScholarPubMed
Eaton, M. D. & Liu, C. (1957). Studies on sensitivity to streptomycin of the atypical pneumonia agent. J. Bact. 74, 784–7.CrossRefGoogle ScholarPubMed
Eaton, M. D., Perry, M. E. & Gocke, I. M. (1951). Effect of nitro-compounds and aldehyde semicarbazones on the virus of primary atypical pneumonia. Proc. Soc. exp. Biol., N.Y., 77, 422–5.CrossRefGoogle ScholarPubMed
Edward, D. G. ff. (1953). Organisms of the pleuropneumonia group causing disease in goats. Vet. Rec. 65, 873–4.Google Scholar
Edward, D. G. ff. (1954). The pleuropneumonia group of organisms: a review together with some new observations. J. gen. Microbiol. 10, 2764.CrossRefGoogle ScholarPubMed
Edward, D. G. ff. & Freundt, E. A. (1956). The classification and nomenclature of organisms of the pleuropneumonia group. J. gen. Microbiol. 14, 197207.CrossRefGoogle ScholarPubMed
Edward, D. G. ff. & Kanarek, A. D. (1960). Organisms of the pleuropneumonia group: their classification into species. Ann. N. Y. Acad. Sci. 79, 696702.CrossRefGoogle ScholarPubMed
Fahey, J. E. (1954). A haemagglutination-inhibition test for infectious sinusitis of turkeys. Proc. Soc. exp. Biol., N.Y., 86, 3840.CrossRefGoogle ScholarPubMed
Fahey, J. E. (1957). Infectious sinusitis of turkeys caused by antibiotic resistant pleuropneumonia-like organisms. Vet. Med. 52, 305307.Google Scholar
Fahey, J. E. & Crawley, J. F. (1954). Studies on chronic respiratory disease of chickens. IV. A haemagglutination-inhibition diagnostic test. Canad. J. comp. Med. 18, 264–72.Google Scholar
Fiertel, A. & Klein, H. P. (1959). On sterols in bacteria. J. Bact. 78, 738–9.CrossRefGoogle ScholarPubMed
Finland, M. & Garrod, L. P. (1960). Demethylchlortetracycline. Brit. med. J. ii, 959–63.CrossRefGoogle Scholar
Fogh, J. & Hacker, C. (1960). Elimination of pleuropneumonia-like organisms from cell cultures. Exp. Cell Res. 21, 242.CrossRefGoogle ScholarPubMed
Fowler, R. C., Coble, D. W., Kramer, N. C. & Brown, T. McP. (1963). Starch gel electrophoresis of a fraction of certain of the pleuropneumonia-like group of microorganisms. J. Bact. 86, 1145–9.CrossRefGoogle ScholarPubMed
Gale, E. F. (1963). Mechanisms of antibiotic action. Pharmacol. Rev. 15, 481530.Google ScholarPubMed
Goodburn, G. M. & Marmion, B. P. (1962). A study of the properties of Eaton's primary atypical pneumonia organism. J. gen. Microbiol. 29, 271–90.CrossRefGoogle ScholarPubMed
Gourevitch, A., Hunt, G. A. & Lein, J. (1958 a). Antibacterial activity of kanamycin. Antibiotics Chemother. 8, 149–59.Google ScholarPubMed
Gourevitch, A., Rossomano, V. Z., Puglisi, T. A., Tynda, J. M. & Lein, J. (1958 b). Microbiological studies with kanamycin. Ann. N.Y. Acad. Sci. 76, 3140.CrossRefGoogle ScholarPubMed
Gross, W. B. (1961). The effect of chlortetracycline, erythromycin and nitrofurans as treatment for experimental ‘Air-Sac’ disease. Poult. Sci. 40, 833–41.CrossRefGoogle Scholar
Gross, W. B. & Johnson, E. P. (1953). Effect of drugs on the agents causing the infectious sinusitis of turkeys and chronic respiratory disease (air-sac infection) of chickens. Poult. Sci. 32, 260–3.CrossRefGoogle Scholar
Haight, T. H. & Finland, M. (1952 a). The antibacterial action of erythromycin. Proc. Soc. exp. Biol., N.Y., 81, 175–83.CrossRefGoogle ScholarPubMed
Haight, T. H. & Finland, M. (1952 b). Observations on mode of action of erythromycin. Proc. Soc. exp. Biol., N.Y., 81, 188–93.CrossRefGoogle ScholarPubMed
Hamdy, A. H., Ferguson, L. C., Sanger, V. L. & Bohl, E. H. (1957). Susceptibility of pleuropneumonia-like organisms to the action of antibiotics erythromycin, chlortetracycline, hygromycin, magnamycin, oxytetracycline and streptomycin. Poult. Sci. 36, 748–54.CrossRefGoogle Scholar
Harkness, A. H. & Bushby, S. R. N. (1954). World Hlth Org. Rep. W.H.O./V.D. T. 117.Google Scholar
Hatch, M. H. (1949). Studies on some characteristics of the pleuropneumonia group of organisms. A Symposium on Current Progress in the Study of Venereal Disease, U.S. Govt. Printing Office, p. 183.Google Scholar
Hearn, H. J., Officer, J. E., Elsner, V. & Brown, A. (1959). Detection, elimination and prevention of contamination of cell cultures with pleuropneumonia-like organisms. J. Bact. 78, 575–82.CrossRefGoogle Scholar
Jungherr, E. L., Luginbuhl, R. E. & Jacobs, R. E. (1953). Pathology and serology of air sac infection. Proc. Amer. vet. med. Ass. p. 308.Google Scholar
Keller, R. & Morton, H. E. (1953). Susceptibilities of Kazan, Nichols and Reiter strains of Treponema and Pleuropneumonia-like organisms to the antibiotic erythromycin. Amer. J. Syph. 37, 379.Google Scholar
Kenny, G. E. & Pollock, M. E. (1963). Mammalian cell cultures contaminated with pleuropneumonia-like organisms. I. Effect of pleuropneumonia-like organisms on growth of established cell strains. J. infect. Dis. 112, 716.CrossRefGoogle ScholarPubMed
Kingston, J. R., Chanock, R. M., Mufson, M. A., Hilleman, L. P., James, W. D., Fox, H. H., Manker, M. A. & Boyers, J. (1961). ‘Eaton agent pneumonia’. II. Treatment with demethylchlortetracycline. J. Amer. med. Ass. 176, 118.CrossRefGoogle Scholar
Kinsky, S. C. (1962). Nystatin binding by protoplasts and a particulate fraction of Neurospora crassa, and a basis for the selective toxicity of polyene antifungal antibiotics. Proc. nat. Acad. Sci., Wash., 48, 1049.CrossRefGoogle Scholar
Kleckner, A. L. (1960). Serotypes of avian pleuropneumonia-like organisms. Amer. J. vet. Res. 21, 274–80.Google ScholarPubMed
Klieneberger, E. (1938). Pleuropneumonia-like organisms of diverse provenance: some results of an enquiry into methods of differentiation. J. Hyg. Camb., 38, 458–76.Google ScholarPubMed
Klieneberger-Nobel, E. (1962). Pleuropneumonia-like Organisms (PPLO): Mycoplasmataceae. London and New York: Academic Press.Google Scholar
Kuzell, W. C., Gardner, G. M. & Fairley, D. L. M. (1949). Aureomycin in experimental polyarthritis with preliminary trials in clinical arthritis. Proc. Soc. exp. Biol., N.Y., 71, 631–3.CrossRefGoogle ScholarPubMed
Laidlaw, P. P. & Elford, W. J. (1936). A new group of filterable organisms. Proc. Roy. Soc. B, 120, 292.Google Scholar
Lampen, J. O., Morgan, E. R., Slocum, A. & Arnow, P. M. (1959). Absorption of nystatin by microorganisms. J. Bact. 78, 282–9.CrossRefGoogle ScholarPubMed
Lampen, J. O., Arnow, P. M., Borowska, Z. & Laskin, A. I. (1962). Location and role of sterol at nystatin-binding sites. J. Bact. 84, 1152–60.CrossRefGoogle ScholarPubMed
Lampen, J. O., Gill, J. W., Arnow, P. M. & Magana-Plaza, I. (1963). Inhibition of the pleuropneumonia-like organism Mycoplasma gallisepticum by certain polyene antifungal antibiotics. J. Bact. 86, 945–9.CrossRefGoogle ScholarPubMed
Leach, R. H. (1962). The osmotic requirements for growth of Mycoplasma. J. gen. Microbiol. 27, 345–54.CrossRefGoogle ScholarPubMed
Leberman, P. R., Smith, P. F. & Morton, H. E. (1950). The susceptibility of pleuropneumonia-like organisms to the in vitro action of antibiotics: aureomycin, chloramphenicol, dihydrostreptomycin, streptomycin and sodium penicillin. J. Urol. 64, 167–73.CrossRefGoogle Scholar
Leberman, P. R., Smith, P. F. & Morton, H. E. (1952). Susceptibility of pleuropneumonia-like organisms to the action of antibiotics. II. Terramycin and neomycin. J. Urol. 68, 388402.CrossRefGoogle Scholar
Lecce, J. G. & Sperling, F. G. (1955). Chronic respiratory disease. III. The effect of treatment on the pleuropneumonia-like organisms flora of avian tracheas. J. Amer. vet. med. Ass. 127, 54–6.Google ScholarPubMed
Lemcke, R. M. (1964). The serological differentiation of Mycoplasma strains (pleuropneumonia-like organisms) from various sources. J. Hyg., Camb., 62, 199219.CrossRefGoogle ScholarPubMed
Lepper, M. H. (1956). Aureomycin (Chlortetracycline) Antibiotics Monograph, no. 7. New York: Medical Encylopaedia Inc.Google Scholar
Marmion, B. P. & Goodburn, G. M. (1961). Effect of organic gold salts on Eaton's primary atypical pneumonia agent and other observations. Nature, Lond. 189, 247–8.CrossRefGoogle Scholar
Melén, B. (1952). The susceptibility of pleuropneumonia-like organisms to the in vitro action of some antibiotics. Acta path. microbiol. scand. 30, 98.CrossRefGoogle Scholar
Morowitz, H. J., Tourtellotte, M. E., Guild, W. R., Castro, E., Woese, C. & Cleverdon, R. C. (1962). The chemical composition and submicroscopic morphology of M. gallisepticum; avian PPLO A 5969. J. molec. Biol. 4, 93.CrossRefGoogle Scholar
Murray, E. S., Chang, R. S., Bell, S. D., Tarizzo, M. L. & Snyder, J. C. (1957). Agents recovered from acute conjunctivitis cases in Saudi Arabia. Amer. J. Ophthal. 43, 32.CrossRefGoogle Scholar
Nasemann, T. & Röckl, H. (1960). Pleuropneumonia-like organisms; their effect on chicken chorioallantoic membrane and their resistance to antibiotics. Ann. N.Y. Acad. Sci. 79, 588–92.CrossRefGoogle ScholarPubMed
Nasri, M. el (1963). A note on the action of Ethidium bromide on Mycoplasma mycoides. Vet. Rec. 75, 812–13.Google Scholar
Nelson, J. B. (1936 a). Studies on an uncomplicated coryza of the domestic fowl. V. A coryza of slow onset. J. exp. Med. 63, 509–13.CrossRefGoogle Scholar
Nelson, J. B. (1936 b). Studies on an uncomplicated coryza of the domestic fowl. VI. Coccobacilliform bodies in birds infected with the coryza of slow onset. J. exp. Med. 63, 515–22.CrossRefGoogle Scholar
Nelson, J. B. (1936 c). Studies on an uncomplicated coryza of the domestic fowl. VII. Cultivation of the coccobacilliform bodies in fertile eggs and in tissue cultures. J. exp. Med. 64, 749–58.CrossRefGoogle Scholar
Nelson, J. B. (1936 d). Studies on an uncomplicated coryza of the domestic fowl. VIII. The infectivity of foetal membrane and tissue culture suspensions of the coccobacilliform bodies. J. exp. Med. 64, 759–69.CrossRefGoogle Scholar
Nelson, J. B. (1960). The behaviour of murine pleuropneumonia-like organisms in HeLa cell cultures. Ann. N. Y. Acad. Sci. 79, 450–7.CrossRefGoogle ScholarPubMed
Newnham, A. G. (1963). Antibiotics in the eradication of avian respiratory mycoplasmosis: a review of the literature together with the results of laboratory trials using chlortetracycline and demethylchlortetracycline. Res. vet. Sci. 4, 491505.CrossRefGoogle Scholar
Newton, B. A. (1956). The properties and mode of action of the polymixins. Bact. Rev. 20, 1427.CrossRefGoogle Scholar
Olesiuk, O. M. & van Roekel, H. (1959). The effects of antibiotics on experimental chronic respiratory disease in chickens. Avian Dis. 3, 457–70.CrossRefGoogle Scholar
Osborn, O. H. & Pomeroy, B. S. (1958). The effect of antibiotics on the infectious sinusitis agent of turkeys: Part I. Egg-transmission. Avian Dis. 2, 180–6.CrossRefGoogle Scholar
Osborn, O. H., Mataney, C. F. & Pomeroy, B. S. (1960). The effect of antibiotics on the infectious sinusitis agent of turkeys: the in vivo development of antibiotic-resistant strains of Mycoplasma. Ann. N.Y. Acad. Sci. 79, 581–7.CrossRefGoogle ScholarPubMed
Paine, T. F., Collins, H. S. & Finland, M. (1948 a). Bacteriologic studies on aureomycin. J. Bact. 56, 489–97.CrossRefGoogle ScholarPubMed
Paine, T. F., Collins, H. S. & Finland, M. (1948 b). Laboratory studies with aureomycin. Ann. N.Y. Acad. Sci. 51, 228–30.CrossRefGoogle ScholarPubMed
Pollock, M. E., Kenny, G. E. & Syverton, J. T. (1960). Isolation and elimination of pleuropneumonia-like organisms from mammalian cell cultures. Proc. Soc. exp. Biol., N. Y., 105, 1015.CrossRefGoogle ScholarPubMed
Pollock, M. E., Treadwell, P. E. & Kenny, G. E. (1963). Mammalian cell cultures contaminated with pleuropneumonia-like organisms. Exp. Cell Res. 31, 321.CrossRefGoogle ScholarPubMed
Razin, S. (1963 a). Structure, composition and properties of the PPLO cell envelope. Recent Progress in Microbiology, VIII. (ed. Gibbons, N. E.), pp. 526–34. Toronto: University Press.CrossRefGoogle Scholar
Razin, S. (1963 b). Binding of nystatin by Mycoplasma (Pleuropneumonia-like organisms). Biochim. biophys. Acta, 78, 771–3.CrossRefGoogle ScholarPubMed
Razin, S. (1963 c). Osmotic lysis of Mycoplasma. J. gen. Microbiol. 33, 471–5.CrossRefGoogle ScholarPubMed
Razin, S., Argaman, M. & Avigan, J. (1963). Chemical composition of Mycoplasma cells and membranes. J. gen. Microbiol. 33, 477–87.CrossRefGoogle ScholarPubMed
Roberts, D. H. (1963). The isolation of a previously unreported avian Mycoplasma serotype and some observations on the incidence of Mycoplasma in poultry. Vet. Rec. 75, 665–7.Google Scholar
Robinson, L. B., Wichelhausen, R. A. & Brown, T. McP. (1952). Sensitivity studies on human pleuropneumonia-like organisms. J. Lab. clin. Med. 39, 290302.Google ScholarPubMed
Robinson, L. B., Wichelhausen, R. A. & Roizman, B. (1956). Contamination of human cell cultures by pleuropneumonia-like organisms. Science, 124, 1147.CrossRefGoogle Scholar
Rouse, H. C., Bonifas, V. H. & Schlesinger, R. W. (1963). Dependence of adenovirus replication on arginine and inhibition of plaque formation by pleuropneumonia-like organisms. Virol. 20, 357–65.CrossRefGoogle Scholar
Rubin, A., Somerson, N. L., Smith, P. F. & Morton, H. E. (1954). The effects of the administration of erythromycin (Ilotycin) upon Neisseria gonorrhoeae and pleuropneumonia-like organisms in the uterine cervix. Am. J. Syph. 38, 472–7.Google ScholarPubMed
Shepard, M. C. (1958). Growth and development of T strain pleuropneumonia-like organisms in human epidermoid carcinoma cells (HeLa). J. Bact. 75, 351–5.CrossRefGoogle ScholarPubMed
Smith, C. G., Lummis, W. L. & Grady, J. E. (1959). An improved tissue culture assay. II. Cytotoxicity studies with antibiotics, chemicals and solvents. Cancer Res. 19, 847–52.Google ScholarPubMed
Smith, P. F. & Rothblat, G. H. (1962). Comparison of lipid composition of pleuropneumonia-like organisms and L-type organisms. J. Bact. 83, 500–6.CrossRefGoogle ScholarPubMed
Stumpel, M. E. M. (1959). Relation between chronic respiratory disease (C.R.D.) and chronic coryza in chickens. Tijdschr. Diergen. 84, 741–50.Google Scholar
Switzer, W. P. (1953). Studies on infectious atrophic rhinitis of swine. I. Isolation of a filterable agent from the nasal cavity of swine with infectious atrophic rhinitis. J. Amer. vet. med. Ass. 123, 45–7.Google ScholarPubMed
Turner, A. W. (1960). Growth-inhibition tests with Mycoplasma mycoides as a basis for chemotherapy and selective culture media. Aust. vet. J. 36, 221–4.CrossRefGoogle Scholar
Wong, S. C. & James, C. G. (1953). The susceptibility of the agents of chronic respiratory disease of chickens and infectious sinusitis of turkeys to various antibiotics. Poult. Sci. 32, 589–93.CrossRefGoogle Scholar
Yamamoto, R. & Adler, H. E. (1956). The effect of certain antibiotics and chemical agents on pleuropneumonia-like organisms of avian origin. Amer. J. vet. Res. 17, 538–42.Google ScholarPubMed
Yoder, H. W. & Hofstad, M. S. (1962). A previously unreported serotype of avian Mycoplasma. Avian Dis. 6, 147–60.CrossRefGoogle Scholar
Zander, D. V. (1961). Origin of S6 strain Mycoplasma. Avian Dis. 5, 154–6.CrossRefGoogle Scholar