Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T22:59:34.190Z Has data issue: false hasContentIssue false

The adsorption of endotoxin molecule in a microporous polyethylene hollow fibre membrane

Published online by Cambridge University Press:  19 October 2009

Yosuke Sawada
Affiliation:
Product and Development Centre, Mitsubishi Rayon Co., Ltd, Higashiku, Nagoya 461, Japan
Reiko Fujii
Affiliation:
Product and Development Centre, Mitsubishi Rayon Co., Ltd, Higashiku, Nagoya 461, Japan
Ikuo Igami
Affiliation:
Product and Development Centre, Mitsubishi Rayon Co., Ltd, Higashiku, Nagoya 461, Japan
Atsushi Kawai
Affiliation:
Product and Development Centre, Mitsubishi Rayon Co., Ltd, Higashiku, Nagoya 461, Japan
Teruo Kamiki
Affiliation:
Public Health Research Institute of Kobe City, Chuoku, Kobe 650, Japan
Makoto Niwa
Affiliation:
Osaka City University Medical School, Department of Bacteriology, Abenoku, Osaka 545, Japan
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The microporous polyethylene hollow fibre membrane is capable of adsorbing small-sized lipopolysaccharides (LPS) prepared by sonication dispersion, column chromatography on Sephadex G-75 and filtration through a filter membrane with a nominal pore size of 0·025 μg. Small-sized LPS had a one-thousandth of endotoxin activity as compared to intact LPS, when determined by the Synthetic Chromogenic Substrate method of LAL with a specific endotoxin activity of 73·7 ng/μg LPS. Fluorescent microscopy of fluorescein conjugated LPS on a microporous polyethylene hollow fibre showed that fiuorescein-LPS was adsorbed through the entire depth of the membrane texture. Accordingly the adsorption capacity of the filter for small-sized LPS was determined as 1·65 mg LPS/3·68 m2 surface/116 mg fibre/module.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

REFERENCES

Bohra, J. N. (1984). Characterization of the pore structure of carbonized viscose rayon yarn: Analysis of adsorption isotherms of nitrogen and carbon dioxide. Fibre Science and Technology 21, 135147.CrossRefGoogle Scholar
Cradock, J. C., Guder, L. A., Francis, D. L. & Morgan, S. L. (1978). Reduction of pyrogens. Aplication of molecular filtration. Journal of Pharmacy and Pharmacology 30, 198199.CrossRefGoogle Scholar
Fujita, Y.&Nakahara, C. (1982). Preparation and application of a new endotoxin determination kit, Pyrodick®, using a chromogenic substrate. In Endotoxins and Their Detection with the Limulus Amoebocyte Lysate Test (ed.Watson, S. W., Levin, J. and Novitsky, T. J.), pp. 173182. New York: A. R. Liss Inc.Google Scholar
Hannecart-Pokorni, E., Dekegel, D. & Dupuydt, F. (1973). Macro-molecular structure of lipopolysaccharides from gram-negative bacteria. European Journal of Biochemistry 38, 613.CrossRefGoogle Scholar
Harada-Suzuki, T., Morita, T., Iwanaga, S., Nakamura, S. & Niwa, M. (1982). Further studies on the chromogenic substrate assay method for bacterial endotoxins using Horseshoe Crab (Tachypleus tridentalus)hemocyte lysate. Journal of Biochemistry 92, 793800.CrossRefGoogle ScholarPubMed
Iwanaga, S., Morita, T., Harada, T., Nakamura, S., Niwa, M., Takada, K., Kimura, T. & Sakakibara, S. (1978). Chromogenic substrates for Horseshoes Crab clotting enzyme. Its application for the assay of bacterial endotoxins. Haemostasis 7, 183188.Google ScholarPubMed
Kamiki, T., Kawai, A., Iqami, I. & Fujii, R. (1982). On a new medical sterile-water equipment utilized hollow fibers. Journal of Antibacterial and Antifungal Agents(Osaka) 10, 239247.Google Scholar
Kamiki, T., Sawada, Y., Kawai, A., Fujii, R., Inoue, M. & Iqami, I. (1985). A new water-purification device, Sterapore® II PKC, for multiple use. MA Journal(Tokyo) 6, 813.Google Scholar
Kanoh, S. & Kawasaki, H. (1980). Studies on the relationship between pyrogen test and Limulus test. Bulletin of National Institute of Hygiene Science(Tokyo) 98, 7680.Google ScholarPubMed
Kanoh, S., Kohlaqe, H. & Siegert, R. (1968). Pyrogenic principle of the ribonucleic acid from the yeast Candida titilis. Journal of Bacteriology 96, 738741.CrossRefGoogle Scholar
Leive, L., Schvlin, V. K. & Mergenhagen, S. E. (1968). Physical, chemical and immunological properties of lipopolysaccharide released from Escherichia coli by ethylenediamine tetraacetic acid. The Journal of Biological Chemistry 243, 63846391.CrossRefGoogle Scholar
Marx, A., Musetescu, M., Sendra, M. & Mihalca, M. (1968). Relationship between particle size and biological activity of Salmonella typhimuriumendotoxin. Zentralblatt fiir Bakteriologie, Parasitenhund, Infectionskrankheiten und Hygiene – Alt. Orginale 207, 313316.Google Scholar
Niwa, M., Milner, K. C, Ribi, E. & Rudbach, J. A. (1969). Alteration of physical, chemical and biological properties of endotoxin by treatment with mild alkali. Journal of Bacteriology 97, 10691077.CrossRefGoogle ScholarPubMed
Ogawa, Y. & Kanoh, S. (1984). Enhancement of endotoxicities and reactivity with carbocyanine dye by sonication of lipopolysaccharide. Microbiology and Immunology 28, 13131323.CrossRefGoogle Scholar
Porter, M. C. (1975). Selecting the right membrane. Chemical Engineering Progress 71, 5561.Google Scholar
Ribi, E., Anacker, R. L., Brown, R., Haskins, W. T., Malmgren, B., Milner, K. C. & Rudbach, J. A. (1966). Reaction of endotoxin and surfactants. I. Physical and biological properties of endotoxin treated with sodium deoxycholate. Journal of Bacteriology 92, 14931509.CrossRefGoogle ScholarPubMed
Rudbach, J. A. (1970). Some requisite in system leading to hybrid formation between bacterial endotoxins. Journal of Infectious Diseases 122, 139145.CrossRefGoogle ScholarPubMed
Sawada, Y., Fujii, R., Igami, I., Kawai, A., Kamiki, T. & Niwa, M. (1986). Endotoxin removal from water using microporous polyethylene chopped fibres as a new adsorbent. Journal of Hygiene 97, 103114.CrossRefGoogle ScholarPubMed
Seid, R. C. & Sadoff, J. C. (1981). Preparation and characterization of detoxified lipopolysaccharide-protein conjugate. The Journal of Biological Chemistry 256, 73057310.CrossRefGoogle Scholar
Shands, J. Jr & Chun, P. W. (1980). The dispersion of gram-negative lipopolysaccharide by deoxycholate. The Journal of Biological Chemistry 255, 12211226.CrossRefGoogle ScholarPubMed
Skelly, R. R., Munkenbeck, P. & Morrison, D. C. (1979). Stimulation of T-independent antibody responses by hapten-lipopolysaccharides without repeating polymeric structure. Infection and Immunity 23, 287293.CrossRefGoogle ScholarPubMed
Spiro, R. C. (1966). Methods in Enzymology 8, pp. 45, New York: Academic Press.Google Scholar
Sweadner, K. J., Forte, M. & Nelsen, L. L. (1977). Filtration removal of endotoxin (pyrogens) in solution in different stages of aggregation. Applied and Environmental Microbiology 34, 382385.CrossRefGoogle Scholar
Usami, H. & Shimohira, A. (1981). Study of microassay of pyrogen in vitro(1). Application of chromogenic assay method (Synthetic substrate method). Annual Report of Tokyo Metropolitan Research Laboratory of Public Health(Tokyo) 32–1, 8387.Google Scholar
Weiskk, M. & Rothfield, L. (1908). The reassociation of lipopoly-saccharide, phospholipid and transferase enzyme of the bacterial cell envelop. Isolation of binary and ternary complexes. The Journal of Biological Chemistry 243, 13201328.Google Scholar
Westphal, O. & Lüdkhitz, O. (1954). Chemical research on lipopoly-saccharidesofgram-negative bacteria. Angewandte Chemie 66, 407417.CrossRefGoogle Scholar
Zey, P. & Jackson, S. (1973). Conditions that affect the colorimetric analysis of lipopolysaccharides from Escherichia coli and Treponema pallidum. Applied Microbiology 26, 129133.CrossRefGoogle ScholarPubMed