Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T11:04:32.609Z Has data issue: false hasContentIssue false

ENVIRONMENTAL REVIEW: The Potential of Nitrification Inhibitors to Manage the Pollution Effect of Nitrogen Fertilizers in Agricultural and Other Soils: A Review

Published online by Cambridge University Press:  03 April 2008

S. N. Singh
Affiliation:
Environmental Science Division, National Botanical Research Institute, Lucknow, India
Amitosh Verma
Affiliation:
Environmental Science Division, National Botanical Research Institute, Lucknow, India
Get access

Abstract

Substantial progress has been made towards land management practices that fulfill the basic requirements of a burgeoning human population. One of them is extensive use of nitrogen-containing chemical fertilizers to boost crop production. Though their use is beneficial, overuse of these fertilizers is causing serious environmental problems associated with emission of NH3, N2, and N2O (the last being an important greenhouse gas implicated both in the greenhouse effect and ozone layer depletion in the stratosphere) to the atmosphere and contamination of ground and surface water resources via nitrate leaching or runoff. Because these losses have both economic and environmental implications, it is high time to utilize a technique that contains nitrogen losses and enhances nitrogen-use efficiency of agricultural crops. To manage nitrogen losses from agricultural fields, different nitrification inhibitors are currently available, and if used along with NH4-containing fertilizers, they can effectively increase nitrogen-use efficacy and attenuate the emission of greenhouse gases by decelerating the soil nitrification processes resulting from ammonia metabolism.

Environmental Practice 9:266–279 (2007)

Type
FEATURES & REVIEWS
Copyright
© 2007 National Association of Environmental Professionals

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amberger, A. 1989. Research on Dicyandiamide as a Nitrification Inhibitor and Future Outlook. Communication in Soil Science and Plant Analysis 20:19331955.CrossRefGoogle Scholar
Aulakh, M. S., D. A. Rennie, and E. A. Paul. 1984. Acetylene and N-serve Effects upon N2O Emission from NH4+ and NO3 Treated Soils under Aerobic and Anaerobic Conditions. Soil Biology and Biochemistry 16:351356.CrossRefGoogle Scholar
Aulakh, M. S., K. Singh, and J. Doran. 2001. Effect of 4-amino-1,2,4-triazole, DCD and ECC on Nitrification Inhibition in a Subtropical Soil under Upland and Flooded Conditions. Biology and Fertility of Soils 33:258263.CrossRefGoogle Scholar
Bédard, C., and R. Knowles. 1989. Physiology, Biochemistry, and Specific Inhibitors of CH4, NH4+, and CO Oxidation by Methanotrophs and Nitrifiers. Microbiology Review 53:6884.Google Scholar
Berg, P., L. Klemedtsson, and T. Rosswall. 1982. Inhibitory Effect of Low Partial Pressures of Acetylene on Nitrification. Soil Biology and Biochemistry 14:301303.CrossRefGoogle Scholar
Bharati, K., S. R. Mohanty, P. V. L. Padmavati, V. R. Rao, and T. K. Adhya. 2006. Influence of Six Nitrification Inhibitors on Methane Production in a Flooded Alluvial Soil. Nutrient Cycling in Agroecosystems 25:389394.Google Scholar
Black, A. S., E. Purnomo, S. R. Young, and M. Conyers. 2004. N Mineralisation and Nitrification in Crop and Pasture Soils. Proceedings of the Australian Agronomy Conference, Australian Society of Agronomy, Brisbane, Australia.
Blackmer, A. M., J. M. Bremner, and E. L. Schmidt. 1980. Production of Nitrous Oxide by Ammonia-Oxidizing Chemoautotrophic Microorganisms in Soil. Applied Environmental Microbiology 40:10601066.Google Scholar
Boeckx, P., X. Xu, and O. Van-Cleemput. 2005. Mitigation of N2O and CH4 Emission from Rice and Wheat Cropping System Using Dicyandiamide and Hydraquinone. Nutrient Cycling in Agroecosystems 72:4149.CrossRefGoogle Scholar
Bremner, J. M., and A. M. Blackmer. 1979. Effects of Acetylene and Soil Water Content on Emission of Nitrous Oxide from Soils. Nature 280:380381.CrossRefGoogle Scholar
Bronson, K. F., and A. R. Mosier. 1993. Nitrous Oxide Emissions and Methane Consumption in Wheat and Corn-Cropped Systems in Northeastern Colorado. In Agricultural Ecosystem Effects on Trace Gases and Global Climate Change, L. A. Harper, A. R. Mosier, J. M. Duxbury and D. E. Rolston, eds. American Society of Agronomy, Madison, WI, 133144.
Bundy, L. G., and J. M. Bremner. 1973. Inhibition of Nitrification in Soils. Soil Science Society of American Proceedings 37:396398.CrossRefGoogle Scholar
Cameron, K. C., and H. J. Di. 2002. The Use of Nitrification Inhibitor, Dicyandiamide (DCD), to Decrease Nitrate and Nitrous Oxide Emission in a Simulated Grazed and Irrigated Grassland. Soil Usage Management 18:395403.CrossRefGoogle Scholar
Campbell, N. E. R., and M. I. H. Aleem. 1965. The Effect of 2-chloro, 6-(trichloromethyl) pyridine on the Chemoautotrophic Metabolism of Nitrifying Bacteria I. Ammonia and Hydroxylamine Oxidation by Nitrosomonas. Antonie van Leeuwenhoek 31:124136.CrossRefGoogle Scholar
Cleland, W. W. 1970. Steady State Kinetics. In The Enzymes Student Edition, P. D. Boyer, ed. Academic Press, Inc., New York, 165.
Crutzen, P. J., and D. H. Ehhalt. 1977. Effects of Nitrogen Fertilizers and Combustion on the Stratospheric Ozone Layer. Ambio 6:112117.Google Scholar
Dachler, M. 1993. The Effect of Dicyandiamide Containing Nitrogen Fertilizers on Root-Crops 2. The Effect on Grain-Maize and Potatoes. Die Bodenkultur 44:119125.Google Scholar
Davidson, E. A. 1991. Fluxes of Nitrous Oxide and Nitric Oxide from Terrestrial Ecosystems. In Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes, J. E. Rogers and W. B. Whitman, eds. American Society of Microbiology, Washington, DC, 219235.
Di, H. J., and K. C. Cameron. 2006. Nitrous Oxide Emissions from Two Dairy Pasture Soils As Affected by Different Rates of a Fine Particle Suspension Nitrification Inhibitor, Dicyandiamide. Biology and Fertility of Soils 42:472480.CrossRefGoogle Scholar
Drozd, J. W. 1980. Respiration in the Ammonia-Oxidizing Chemoautotrophic Bacteria. In Diversity of Bacterial Respiratory Systems, C. J. Knowles, ed. CRC Press, Boca Raton, FL, 87111.
Girvan, M. S., C. D. Campbell, K. Killham, J. I. Prosser, and L. A. Glover. 2005. Bacterial Diversity Promotes Community Stability and Functional Resilience after Perturbation. Environmental Microbiology 7:301313.CrossRefGoogle Scholar
Goreau, T. J., W. A. Kaplan, S. C. Wofsy, M. B. McElroy, F. W. Valois, and S. W. Watson. 1980. Production of NO2 and N2O by Nitrifying Bacteria at Reduced Concentration of Oxygen. Applied Environmental Microbiology 40:526532.Google Scholar
Graziano, P. L. 1990. Improvement of Nitrogen Efficiency by Addition of Ammonium Thiosulfate in the Liquid Fertilization of Maize. Fertilizer Research 24:111114.CrossRefGoogle Scholar
Guiraud, G., and C. Marol. 1992. Influence of Temperature on Mineralization Kinetics with a Nitrification Inhibitor (Mixture of Dicyandiamide and Ammonium Thiosulphate). Biology and Fertility of Soils 13:15.CrossRefGoogle Scholar
Hanaki, K., C. Wantawin, and S. Ohgaki. 1990. Nitrification at Low Levels of Dissolved Oxygen with and without Organic Loading in a Suspended Growth Reactor. Water Research 24:297302.CrossRefGoogle Scholar
Hauck, R. D. 1980. Mode of Action of Nitrification Inhibitors. In Nitrification Inhibitors—Potentials and Limitations. M. Stelly et al., eds. ASA and SSSA, Madison, WI, 1933.
Hua, J. F., Y. Jiang, and W. J. Liang. 2006. Response of Nematodes in a Hapli-Udic Argosol to Urea Amended with Urea and Nitrification Inhibitors. Pedosphere 16:428434.CrossRefGoogle Scholar
Hyman, M. R., I. B. Murton, and D. J. Arp. 1988. Interaction of Ammonia Monooxygenase from Nitrosomonas europaea with Alkanes, Alkenes and Alkynes. Applied Environmental Microbiology 54:31873190.Google Scholar
Hyman, M. R., C. L. Page, and D. J. Arp. 1994. Oxidation of Methyl Fluoride and Dimethyl Ether by Ammonia Monooxygenase in Nitrosomonas europaea. Applied Environmental Microbiology 60:30333035.Google Scholar
Hyman, M. R., S. A. Russell, R. L. Ely, K. J. Williamson, and D. J. Arp. 1995. Inhibition, Inactivation, and Recovery of Ammonia-Oxidizing Activity in Cometabolism of Trichloroethylene by Nitrosomonas europaea. Applied Environmental Microbiology 60:14801487.Google Scholar
Hyman, M. R., and P. M. Wood. 1984. Ethylene Oxidation by Nitrosomonas europaea. Archives of Microbiology 137:155158.CrossRefGoogle Scholar
Hyman, M. R., C. Y. Kim, and D. J. Arp. 1990. Inhibition of Ammonia Monooxygenase in Nitrosomonas europaea by Carbon Disulfide. Journal of Bacteriology 172:47754782.CrossRefGoogle Scholar
Hyman, M. R., and D. J. Arp. 1992. 14C2H2- and 14CO2-labeling Studies of the de novo Synthesis of Polypeptides by Nitrosomonas europaea during Recovery from Acetylene and Light Inactivation of Ammonia Monooxygenase. Journal of Biological Chemistry 267:15341545.Google Scholar
Hyman, M. R., and P. M. Wood. 1985. Suicidal Inactivation and Labelling of Ammonia Monooxygenase by Acetylene. Journal of Biological Chemistry 227:719725.Google Scholar
Hynes, R. K., and R. Knowles. 1978. Inhibition by Acetylene of Ammonia Oxidation in Nitrosomonas europaea. FEMS Microbiology Letter 4:319321.CrossRefGoogle Scholar
Jones, R. D., and R. Y. Morita. 1983. Methane Oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Applied Environmental Microbiology 45:401410.Google Scholar
Juliette, L.Y., M. R. Hyman, and D. J. Arp. 1993. Inhibition of Ammonia Oxidation in Nitrosomonas europaea by Sulfur Compounds: Thioethers are Oxidized to Sulfoxides by Ammonia Monooxygenase. Applied Environmental Microbiology 59:37183727.Google Scholar
Kasahara, Y., S. Ohki, Y. Sato, R. Takahashi, T. Tokuyama, S. Takeshima, J. W. Vonk, and K. Wakabayashi. 2002. Influence of 1,3,5-triazine Compounds on Ammonia Axidizing Activity of Cell-Free Extracts from Nitrosomonas europaea. Journal of Pesticide Science 27:133135.CrossRefGoogle Scholar
Keener, W. K., and D. J. Arp. 1994. Transformation of Aromatic Compounds by Nitrosomonas europaea. Applied Environmental Microbiology 60:19141920.Google Scholar
Khalil, M., and M. Rasmussen. 1988. Nitrous Oxide: Trends and Global Mass Balance over the Last Three Thousand Years. Annals of Glaciology 10:7379.CrossRefGoogle Scholar
Khalil, M. A. K. 1999. Non-CO2 Greenhouse Gases in the Atmosphere. Annual Review of Energy/Environment 24:245261.Google Scholar
Lees, H. 1952. The Biochemistry of the Nitrifying Organisms. 1. The Ammonia-Oxidizing Systems of Nitrosomonas. Journal of Biochemistry 52:134139.Google Scholar
Li, J. Y., Q. X. Hua, J. F. Tan, J. M. Zhou, and Y. L. Hou. 2005. Mineral Coated Fertilizer Effect on Nitrogen Use Efficiency and Yield of Wheat. Pedosphere 15:526531.Google Scholar
Liang, W. J., Q. Li, Y. Ziang, and D. A. Neher. 2005. Nematode Faunal Analysis in an Aquatic Brown Soil Fertilized with Slow Release Urea, North East China. Applied Soil Ecology 29:185192.CrossRefGoogle Scholar
Lipschultz, F., O. C. Zafiriou, S. C. Wofsy, M. B. McElroy, F. W. Valois, and S. W. Watson. 1981. Production of NO and N20 by Soil Nitrifying Bacteria. Nature 294:641643.CrossRefGoogle Scholar
Macadam, X. M. B., A. D. Prado, P. Merino, J. M. Estavillo, M. Pinto, and C. Gonzalez-Murua. 2003. Dicyandiamide and 3,4-dimethyl pyrazole phosphate Decrease N2O Emission from Grassland but Dicyandiamide Produces Deleterious Effects in Clover. Journal of Plant Physiology 160:15171523.CrossRefGoogle Scholar
Matsubaa, D., T. Hirotoshi, S. Yukiharu, T. Reiji, T. Tatsuaki, and W. Ko. 2003. Susceptibility of Ammonia-Oxidizing Bacteria to Nitrification Inhibitors. Zeitschrift für Naturforschung 58:282287.CrossRefGoogle Scholar
McCarty, G. W., and J. M. Bremner. 1990. Persistence and Effects of Nitrification Inhibitors Added to Soils. Communications in Soil Science and Plant Analysis 21:639648.CrossRefGoogle Scholar
McCarty, G. W., and J. M. Bremner. 1989. Inhibition of Nitrification in Soils by Heterocyclic Nitrogen Compounds. Biology and Fertility of Soils 8:204211.CrossRefGoogle Scholar
McCarty, G. W. 1999. Modes of Action of Nitrification of Inhibitors. Biology and Fertility of Soils 29:19.CrossRefGoogle Scholar
McLain, J. E. T., and D. Martens. 2006. N2O Production by Heterophylic N Transformations in a Semi Arid Soil. Applied Soil Ecology 32:352363.CrossRefGoogle Scholar
McTaggart, I., H. Clayton, and K. Smith. 1994. Nitrous Oxide from Fertilized Frassland: Strategies for Reducing Emissions. Non-CO2 Greenhouse Gases: Why and How to Control? Proceedings of an International Symposium. Maastricht, Netherlands, 13–15 December 1993, Kluwer Academic Publisher, Dordrecht, Netherlands, 421426.
McTaggart, I. P., H. Clayton, J. Parker, and K. S. Swan. 1997. Nitrous Oxide Emission from Grassland and Spring Barley, Following N Fertilizer Application with and without Nitrification Inhibitors. Biology and Fertility of Soils 25:261268.CrossRefGoogle Scholar
Menendez, S., P. Merino, M. Pinto, C. Gonzaelz-Murua, and J. M. Estavillo. 2006. 3-4-dimethylpyrazole phosphate Effect on Nitrous Oxide, Nitric Oxide, Ammonia and Carbon Dioxide Emission from Grassland. Journal of Environmental Quality 35:973981.CrossRefGoogle Scholar
Minami, K. 1994. Effect of Nitrification Inhibitors and Slow Release Fertilizers on Emissions of Nitrous Oxide from Fertilized Soils. In CH4 and N2O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources, K. Minami, A. R. Mosier and R. Sass, eds. Yokendo Publishers, Tokyo, Japan, 187196.
Mosier A. R., K. F. Bronson, J. R. Freney, and D. G. Keerthisinghe. 1994. Use of Nitrification Inhibitors to Reduce Nitrous Oxide Emission from Urea Fertilized Soils. In CH4 and N2O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources, K. Minami, A. Mosier, and R Sass, eds. Yokendo Publishers, Tokyo, Japan, 197207.
Mosier, A. R., M. A. Bleken, E. C. Chaiwanakupt-Ellis, J. R. Fenery, R. B. Howarth, P. A. Matson, K. Minami, R. Naylor, K. N. Weeks, and Z. L. Zhu. 2002. Policy Implications of Human-Accelerated Nitrogen Cycling. Biogeochemistry 57–58:477516.CrossRefGoogle Scholar
Mosier, A. R., D. W. Valentine, W. J. Parton, D. S. Ojima, D. S. Schimel, and J. A. Delgado. 1996. CH4 and N2O Fluxes in the Colorado Short Grass Steppe: I. Impact of Landscape and Nitrogen Addition. Global Biogeochemical Cycles 10:387399.CrossRefGoogle Scholar
Ortiz de Montellano, P. R. 1988. Suicide Substrates for Drug Metabolizing Enzymes: Mechanisms and Biological Consequences. In Progress In Drug Metabolism, G. G. Gibson, ed. Taylor and Francis, New York, 99149.
Pathak, H., and D. B. Nedwell. 2001. Strategies to Reduce Nitrous Oxide Emission from Soil with Fertilizer Selection and Nitrification Inhibitor. Water, Air and Soil Pollution 129:217228.CrossRefGoogle Scholar
Patra, A. K., P. K. Chhonkar, and M. A. Khan. 2006. Effect of Green Manure Sesbania sesban and Nitrification Inhibitor Encapsulated Calcium Carbide (ECC) on Soil Mineral-N, Enzyme Activity and Nitrifying Organisms in a Rice-Wheat Cropping System. European Journal of Soil Biology 42:173180.CrossRefGoogle Scholar
Pollard, P. C. 2006. A Quantitative Measure of Nitrifying Bacterial Growth. Water Research 40:15691576.CrossRefGoogle Scholar
Poth, M., and D. D. Focht. 1985. 15N Kinetic Analysis of N2O Production by Nitrosomonas europaea: An Examination of Nitrifier Denitrification. Applied Environmental Microbiology 49:11341141.Google Scholar
Prasad, R., and J. E. Power. 1995. Nitrification Inhibitors for Agriculture, Health and the Environment. Advance Agronomy 54:234281.CrossRefGoogle Scholar
Prosser, J. I. 2005. Nitrification. In The Encyclopedia of Soils in the Environment, D. Hillel, ed. Elsevier Ltd., Oxford, UK, 3139.
Rascche, M. E., R. E. Hicks, M. R. Hyman, and D. J. Arp. 1990. Oxidation of Monohalogenated Ethanes and n-Chloroinated Alkanes by Whole Cells of Nitrosomonas europaea. Journal of Bacteriology 172:53685373.CrossRefGoogle Scholar
Rascche, M. E., M. R. Hyman, and D. J. Arp. 1990. Biodegradation of Halogenated Hydrocarbon Fumigants by Nitrifying Bacteria. Applied Environmental Microbiology 56:25682571.Google Scholar
Reid, E. E. 1963. Organic Chemistry of Bivalent Sulfur, volumes 4 and 5. Chemical Publishing Co., Inc., New York.
Robertson, G. P. 1993. Fluxes of Nitrous Oxide and Other Nitrogen Trace Gases from Intensively Managed Landscapes. In Agroecosystem Effects on Radiatively Important Trace Gases and Global Climate Change, A. Harper, A. R. Mosier, J.M. Duxbury and D. E. Rolston, eds. American Society of Agronomy, Madison, WI, 55108.
Robertson, G. P., and J. M. Tiedje. 1987. Nitrous Oxide Sources in Aerobic Soils: Nitrification, Denitrification, and Other Biological Processes. Soil Biology and Biochemistry 19:187193.CrossRefGoogle Scholar
Robertson, K., J. Schnurer, M. Clarholm, T. A. Bonde, and T. Rosswall. 1988. Microbial Biomass in Relation to C and N Mineralization during Laboratory Incubations. Soil Biology and Biochemistry 20:281286.CrossRefGoogle Scholar
Rochester, I. J., G. A. Constable, and P. G. Saffigna. 1996. Effective Nitrification Inhibitors May Improve Fertilizer Recovery in Irrigated Cotton. Biology and Fertility of Soils 23:16.CrossRefGoogle Scholar
Sahrawat, K. L., and D. R. Keeney. 1985. Perspectives for Research on Development on Nitrification Inhibitors. Communication in Soil Science and Plant Analysis 16:517524.CrossRefGoogle Scholar
Scheffer, B., and R. Bartels. 1998. Kann durch Einsatz Stabilisierter N-Dünger der Nitrataustrag aus einem Sandboden Verringert Werden? VDLUFA-Schriftenreihe 49:633636.Google Scholar
Skiba, U., K. A. Smith, and D. Fowler. 1993. Nitrification and Denitrification as Sources of Nitric Oxide and Nitrous Oxide in a Sandy Loam Soil. Soil Biology and Biochemistry 25:15271536.CrossRefGoogle Scholar
Smith, C. J., and P. M. Chalk. 1980. Gaseous Nitrogen Evolution during Nitrification of Ammonia Fertilizer and Nitrite Transformations in Soils. Soil Science Society of American Journal 44:277282.CrossRefGoogle Scholar
Smith, M. S., and K. Zimmerman. 1981. Nitrous Oxide Production by Non-Denitrifying Soil Nitrate Reducers. Soil Science Society of American Journal 45:865871.CrossRefGoogle Scholar
Solansky, S. 1982. N-Stabilisator SKW-DIDIN Verbessert die Stickstoffwirkung der Gülle. Blickfeld 61:14.Google Scholar
Spanakakis, A., and A. Viedt. 1990. Performance of Winter Wheat Cultivars under Reduced Nitrogen Conditions. In Genetic Aspects of Plant Mineral Nutrition, N. El Bassam, M. Dambroth and B. C. Loughman, eds. Kluwer Academic Publisher, Amsterdam, Netherlands, 465473.
Stewart, J. B. 1988. Modelling Surface Conductance of Pine Forest. Agriculture and Forest Meteorology 43:1935.CrossRefGoogle Scholar
Sun, C. F., W. X. Cao, and Y. B. Dai. 2001. Progress in the Study on Nitrogen Use Efficiency in Soil Crop System. Soils (in Chinese) 33:6469.Google Scholar
Takahashi, I., S. Ohki, M. Murakami, S. Takagi, Y. Sato, J. W. Vonk, and K. Wakabayashi. 1997. Mode of Action and QSAR Studies of Nitrification Inhibitors: Effect of trichloromethyl-1,3,5-triazines on Ammonia-Oxidizing Bacteria. Journal of Pesticide Science 22:2732.CrossRefGoogle Scholar
Teske, W., and W. Matzel. 1988. Die Beeinflussung der Nitrifikationshemmenden Wirkung von Dicyandiamid durch Abbau und Verlagerung im Boden. Arch Acker Pflanzenbau Bodenkd 32:241246.Google Scholar
Timmermann, F., and H. Söchtig. 1984. Einfluß von Nitrifikationsinhibitoren auf Umsetzung, Verlagerung und Aufnahme von Stickstoff nach Düngung mit Verschiedenen Güllen. VDLUFA-Schriftenreihe 11:258271.Google Scholar
Topp, E., and R. Knowles. 1984. Effects of nitrapyrin (2-chloro-6-(trichloromethyl) pyridine) on the Obligate Methanotroph Methylosinus trichosporium OB3b. Applied Environmental Microbiology 47:258262.Google Scholar
Trenkel, M. E. 1997. Improving Fertilizer Use Efficiency: Controlled-Release and Stabilized Fertilizers in Agriculture. International Fertilizer Industry Association, Paris, France, 151 pp.
Tsang, D. C. Y., and I. Suzuki. 1982. Cytochrome c554 as a Possible Electron Donor in the Hydroxylation of Ammonia and Carbon Monoxide in Nitrosomonas europaea. Canadian Journal Biochemistry 60:10181024.CrossRefGoogle Scholar
Vannelli, T., and A. B. Hooper. 1992. Oxidation of Nitrapyrin to 6-chloropicolinic acid by Ammonia-Oxidizing Bacterium Nitrosomonas europaea. Applied Environmental Microbiology 58:23212325.Google Scholar
Vannelli, T., and A. B. Hooper. 1993. Reductive Dehalogenation of the Trichloromethyl Group of Nitrapyrin by the Ammonia-Oxidizing Bacterium Nitrosomonas europaea. Applied Environmental Microbiology 59:35973601.Google Scholar
Vannelli, T., M. Logan, D. M. Arciero, A. B. Hooper. 1990. Degradation of Halogenated Aliphatic Compounds by Ammonia-Oxidizing Bacterium Nitrosomonas europaea. Applied Environmental Microbiology 56:11691171.Google Scholar
Verma, A., L. Tyagi, S. Yadav, and S. N. Singh. 2006. Temporal Changes in N2O Efflux from Cropped and Fallow Agricultural Fields. Agricultural Ecosystems and Environment 116:209216.CrossRefGoogle Scholar
Verma, A., L. Tyagi, and S. N. Singh. 2008. Attenuation of N2O Emission Rates from Agricultural Soil at Different Dicyandiamide Concentrations. Environmental Monitoring and Assessment 137:287293.CrossRefGoogle Scholar
Voysey, P. A., and P. M. Wood. 1987. Methanol and Formaldehyde Oxidation by an Autotrophic Nitrifying Bacterium. Journal of General Microbiology 33:283290.CrossRefGoogle Scholar
Walter, M. M., D. R. Keeney, and I. R. Fillery. 1979. Inhibition of Nitrification by Acetylene. Soil Science Society of American Journal 43:195196.CrossRefGoogle Scholar
Wiesler, F., T. Behrens, and W. J. Horst. 2001. The Role of Nitrogen Cultivars in Sustainable Agriculture. Scientific World Journal 1:6169.CrossRefGoogle Scholar
Wollring, J., S. Reusch, and C. Karlsson. 1998. Variable Nitrogen Application Based on Crop Sensing. Proceedings No. 423. International Fertiliser Society, York, United Kingdom.
Wood, L. B., B. J. E. Hurley, and P. J. Matthews. 1981. Some Observations on the Biochemistry and Inhibition of Nitrification. Water Research 15:543551.CrossRefGoogle Scholar
Yoshida, T., and M. Alexander. 1970. Nitrous Oxide Formation by Nitrosomonas europaea and Heterotrophic Microorganisms. Soil Science Society of American Journal 34: 880882.CrossRefGoogle Scholar
Yoshida, T., and M. Alexander. 1971. Hydroxylamine Oxidation by Nitrosomonas europaea. Soil Science 3:307312.CrossRefGoogle Scholar
Yu, G., Y. Zhang, and D. Wan. 2006. Effect of Nitrification Inhibitors on Nitrate Content in Soil and Pakchoi and on Pakchoi Yield (article in Chinese). Ying Yong Sheng Tai Xue Bao 17:247250.Google Scholar
Yuan, F., W. Ran, Q. Shen, and D. Wang. 2005. Characterization of Nitrifying Bacteria Communities of Soils from Different Ecological Regions of China by Molecular and Conventional Methods. Biology and Fertility of Soils 41:2227.CrossRefGoogle Scholar
Zacherl, B., and A. Amberger. 1990. Effect of the Nitrification Inhibitors Dicyandiamide, Nitrapyrin and Thiourea on Nitrosomonas europaea. Fertilizer Research 22:3744.CrossRefGoogle Scholar
Zafirion, O. C., Q. S. Hanley, and G. Snyder. 1989. Nitric Oxide and Nitrous Oxide Production and Cycling during Dissimilatory Nitrite Reduction by Pseudomonas perfectomarina. Journal of Biological Chemistry 264:56945699.Google Scholar
Zerulla, W., T. Barth, J. Dressel, K. Erhardt, K. H. von Locquenghien, G. Pasda, M. Rädle, and A. Wissemeier. 2001. 3,4-Dimethylpyrazole Phosphate (DMPP)—A New Nitrification Inhibitor for Agriculture and Horticulture: An Introduction. Biology and Fertility of Soils 34:7984.CrossRefGoogle Scholar
Zhou, L., L. Chen, R. Li, and Z. Wu. 2003. Behaviour of Soil Urea Nitrogen and Its Regulation through Incorporating with Inhibitor Hydroquinone and Dicyandiamide. In Fertilization in the Third Millennium: Fertilizer, Food Security and Environment Protection—12th International World Fertilizer Congress of CIEC, L. Ji et al., eds. Liaoning Scientific and Technological Press, Shenyang, China, 11751192.