Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T05:07:40.680Z Has data issue: false hasContentIssue false

Reptile species persistence under climate change and direct human threats in north-western Argentina

Published online by Cambridge University Press:  19 May 2017

JAVIER NORI*
Affiliation:
Centro de Zoología Aplicada and Instituto de Diversidad y Ecología Animal (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
GERARDO C. LEYNAUD
Affiliation:
Centro de Zoología Aplicada and Instituto de Diversidad y Ecología Animal (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
JOSÉ VOLANTE
Affiliation:
Laboratorio de Teledetección y SIG, Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Salta. Ruta Nacional 68, Km 172 Cerrillos, Salta, Argentina
CRISTIAN S. ABDALA
Affiliation:
UEL Unidad Ejecutora Lillo, Conicet, FML – Universidad Nacional de Tucumán, Argentina
GUSTAVO J. SCROCCHI
Affiliation:
UEL Unidad Ejecutora Lillo, Conicet, FML – Universidad Nacional de Tucumán, Argentina
CLARITA RODRÍGUEZ-SOTO
Affiliation:
Centro de Estudios e Investigación en Desarrollo Sustentable. Universidad Autónoma del Estado de México, Toluca, México
ROBERT L. PRESSEY
Affiliation:
Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
RAFAEL LOYOLA
Affiliation:
Laboratório de Biogeografia da Conservação, Departamento de Ecologia, Universidade Federal de Goiás, Brazil Brazilian Research Network on Climate Change – Rede Clima, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, São Paulo, Brazil
*
*Correspondence: Dr Javier Nori email: [email protected]

Summary

Protected areas have been established historically in residual places where the potential for extractive uses is low, implying that places at risk are usually under-protected. Argentina is no exception, with few protected areas established in productive regions that are prone to conversion. Here, using reptiles as a study group and considering the most important human threats in north-western Argentina, we estimated priority conservation areas where we expect species to persist in the face of climate change and land conversion. Protected areas cover no more than 9% of the study region, but represent less than 15% of reptile distributions. There are great opportunities for improving the conservation status in the region by protecting only 8% more of north-western Argentina, with the level of species protection inside the protected area network increasing almost four-fold, reaching 43% of species distributions on average and 59% of the distributions of threatened reptiles. Fortunately, the highest diversity of reptiles in the region does not match the places targeted for agriculture expansion. Our findings suggest that future prioritization schemes should embrace other groups that are especially diverse in the Chaco ecoregion, which overlaps with our study area.

Type
Non-Thematic Papers
Copyright
Copyright © Foundation for Environmental Conservation 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary material can be found online at https://doi.org/10.1017/S0376892917000285

References

Abdala, C.S., Acosta, J.L., Acosta, J.C., Álvarez, B.B., Avila, L.J., Blanco, G.M., Bonino, M., Boretto, J.M., Brancatelli, G., Breitman, M.F. et al. (2012) Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetología 26: 215247.Google Scholar
Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 4247.CrossRefGoogle ScholarPubMed
Balmford, A., Green, R. & Phalan, B. (2012) What conservationists need to know about farming. Proceedings of the Royal Society B: Biological Sciences 279: 27142724.CrossRefGoogle ScholarPubMed
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J. & Villalobos, F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222: 18101819.CrossRefGoogle Scholar
Brown, A., Martinez Ortiz, U., Acerbi, M. & Corcuera, J. (2006) La Situación Ambiental Argentina. Buenos Aires, Argentina: Fundación Vida Silvestre Argentina.Google Scholar
Burkart, R. (2006) Las áreas protegidas de la Argentina. In: La Situación Ambiental Argentina, eds. Brown, A., Ortiz Martinez, A., Acerbi, M. & Corcuera, J., pp. 183. Buenos Aires, Argentina: Fundación Vida Silvestre Argentina.Google Scholar
Busby, J. (1991) BIOCLIM – a bioclimate analysis and prediction system. In: Nature Conservation: Cost Effective Biological Surveys and Data Analysis, eds. Margules, C.R. & Austin, M.P., pp. 6468. Melbourne, Australia: CSIRO.Google Scholar
Carroll, C., Dunk, J.R. & Moilanen, A. (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Global Change Biology 16: 891904.Google Scholar
CBI (2010) The Convention on Biological Diversity's 2010 Target [www document]. URL https://www.cbd.int/sp/targets/ Google Scholar
Ciarleglio, M., Barnes, J.W. & Sarkar, S. (2008) ConsNet – A tabu search approach to the spatially coherent conservation area network design problem. Journal of Heuristics 16: 537557.Google Scholar
Ciarleglio, M., Wesley Barnes, J. & Sarkar, S. (2009) ConsNet: new software for the selection of conservation area networks with spatial and multi-criteria analyses. Ecography 32: 205209.Google Scholar
DeFries, R., Karanth, K.K. & Pareeth, S. (2010) Interactions between protected areas and their surroundings in human-dominated tropical landscapes. Biological Conservation 143: 28702880.Google Scholar
Devillers, R., Pressey, R.L., Grech, A., Kittinger, J.N., Edgar, G.J., Ward, T. & Watson, R. (2015) Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection? Aquatic Conservation: Marine and Freshwater Ecosystems 25: 480504.CrossRefGoogle Scholar
Di Minin, E., Veach, V., Lehtomäki, J., Pouzols, F.M. & Moilanen, A. (2014) A Quick Introduction to Zonation. Helsinki, Finland: Unigrafia OY.Google Scholar
Diniz-Filho, J.A.F., Bini, M.L., Rangel, F., Loyola, R.D., Hof, C., Nogues-Bravo, D. & Araújo, M.B. (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32: 897906.CrossRefGoogle Scholar
Faleiro, F.V. & Loyola, R.D. (2013) Socioeconomic and political trade-offs in biodiversity conservation: a case study of the Cerrado Biodiversity Hotspot, Brazil. Diversity and Distributions 19: 977987.Google Scholar
Faleiro, F.V., Machado, R.B. & Loyola, R.D. (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biological Conservation 158: 248257.Google Scholar
Franklin, J. (2009) Mapping Species Distributions New York, NY: Cambridge University Press.Google Scholar
Frate, L., Acosta, A.T.R., Cabido, M., Hoyos, L. & Carranza, M.L. (2015) Temporal changes in forest contexts at multiple extents: three decades of fragmentation in the Gran Chaco (1979-2010), Central Argentina. PLoS ONE 10: e0142855.CrossRefGoogle ScholarPubMed
Fuller, T., Sánchez-Cordero, V., Illoldi-Rangel, P., Linaje, M. & Sarkar, S. (2007) The cost of postponing biodiversity conservation in Mexico. Biological Conservation 134: 593600.CrossRefGoogle Scholar
Garcia, R., Cabeza, M., Rahbek, C. & Araújo, M.B. (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344: 1247579.Google Scholar
Gasparri, N.I. & Grau, H.R. (2009) Deforestation and fragmentation of Chaco dry forest in NW Argentina (1972–2007). Forest Ecology and Management 258: 913921.Google Scholar
Gibbons, J.W., Scott, D.E., Ryan, T.J., Buhlmann, K.A., Tuberville, T.E., Metts, B.S., Greene, J.L., Mills, T., Leiden, Y., Poppy, S. & Winne, C.T. (2000) The global decline of reptiles, déjà vu amphibians. Bioscience 50: 653666.CrossRefGoogle Scholar
Giraudo, A.R., Arzamendia, V., Bellini, G.P., Bessa, C.A., Cinthia, C., Cardozo, G., Chiaraviglio, M., Costanzo, M.B., Eduardo, G., Di Cola, V., Di Pietro, D.O. et al. (2012) Categorización del estado de conservación de las Serpientes de la República Argentina. Cuadernos de Herpetología 26: 303326.Google Scholar
Grau, H.R., Torres, R., Gasparri, N.I., Blendinger, P.G., Marinaro, S. & Macchi, L. (2015) Natural grasslands in the Chaco. A neglected ecosystem under threat by agriculture expansion and forest-oriented conservation policies. Journal of Arid Environments 123: 4046.Google Scholar
Groves, C.R., Game, E.T., Anderson, M.G., Cross, M., Enquist, C., Ferdaña, Z., Girvetz, E., Gondor, A., Hall, K.R., Higgins, J. et al. (2012) Incorporating climate change into systematic conservation planning. Biodiversity and Conservation 21: 16511671.Google Scholar
Hermoso, V., Januchowski-Hartley, S.R. & Pressey, R.L. (2013) When the suit does not fit biodiversity: loose surrogates compromise the achievement of conservation goals. Biological Conservation 159: 197205.CrossRefGoogle Scholar
Hoffmann, M., Hilton-Taylor, C., Angulo, A., Böhm, M., Brooks, T.M., Butchart, S.H.M., Carpenter, K.E., Chanson, J., Collen, B., Cox, N.A. et al. (2010) The impact of conservation on the status of the world's vertebrates. Science 330: 15031509.Google Scholar
Hoyos, L.E., Cingolani, A.M., Zak, M.R., Vaieretti, M.V., Gorla, D.E. & Cabido, M.R. (2013) Deforestation and precipitation patterns in the arid Chaco forests of central Argentina. Applied Vegetation Science 16: 260271.Google Scholar
IUCN & UNEP (2015) The World Database of Protected Areas (WDPA). UNEP-WCMC. Cambridge, UK [www document]. URL www.protectedplanet.net Google Scholar
Kremen, C., Cameron, A., Moilanen, A., Phillips, S.J., Thomas, C.D., Beentje, H., Dransfield, J., Fisher, B.L., Glaw, F., Good, T.C. et al. (2008) Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320: 222226.CrossRefGoogle ScholarPubMed
Ladle, R.J. & Whittaker, R.J. (2011) Conservation Biogeography. Chichester, UK: Wiley-Blackwell.CrossRefGoogle Scholar
Laurance, W.F., Useche, D.C., Rendeiro, J., Kalka, M., Bradshaw, C.J., Sloan, S.P., Laurance, S.G., Campbell, M., Abernethy, K., Alvarez, P. et al. (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489: 290294.CrossRefGoogle ScholarPubMed
Lemes, P. & Loyola, R.D. (2013) Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PLoS ONE 8: e54323.CrossRefGoogle ScholarPubMed
Liu, C., White, M. & Newell, G. (2011) Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34: 232243.Google Scholar
Loyola, R.D., Lemes, P., Nabout, J.C., Trindade-Filho, J., Sagnori, M.D., Dobrovolski, R. & Diniz-Filho, J.A.F. (2012) A straightforward conceptual approach for evaluating spatial conservation priorities under climate change. Biodiversity and Conservation 22: 483495.Google Scholar
Margules, C.R. & Pressey, R.L. (2000) Systematic conservation planning. Nature 405: 243253.Google Scholar
Mascia, M.B., Pailler, S., Krithivasan, R., Roshchanka, V., Burns, D., Mlotha, M.J., Murray, D.R. & Peng, N. (2014) Protected area downgrading, downsizing, and degazettement (PADDD) in Africa, Asia, and Latin America and the Caribbean, 1900–2010. Biological Conservation 169: 355361.Google Scholar
Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, W., Wüest, R.O., Zimmermann, N.E. & Elith, J. (2014) What do we gain from simplicity versus complexity in species distribution models? Ecography 37: 12671281.Google Scholar
Moilanen, A., Anderson, B.J., Eigenbrod, F., Heinemeyer, A., Roy, D.B., Gillings, S., Armsworth, P.R., Gaston, K.J. & Thomas, C.D. (2011) Balancing alternative land uses in conservation prioritization. Ecological Applications 21: 14191426.Google Scholar
Moilanen, A., Pouzols, F.M., Meller, L., Veach, V., Arponen, A., Leppänen, J. & Kujala, H. (2014) Spatial Conservation Planning Methods and Software ZONATION. User Manual. Helsinki, Finland: C-BIG Conservation Biology Informatics Group, University of Helsinki.Google Scholar
Nori, J., Lescano, J.N., Illoldi-Rangel, P., Frutos, N., Cabrera, M.R. & Leynaud, G.C. (2013) The conflict between agricultural expansion and priority conservation areas: making the right decisions before it is too late. Biological Conservation 159: 507513.Google Scholar
Nori, J., Lemes, P., Urbina-Cardona, N., Baldo, D., Lescano, J. & Loyola, R. (2015) Amphibian conservation, land-use changes and protected areas: a global overview. Biological Conservation 191: 367374.Google Scholar
Nori, J. & Loyola, R. (2015) On the worrying fate of data deficient amphibians. PLoS ONE 10: e0125055.Google Scholar
Nori, J., Torres, R., Lescano, J.N., Cordier, J.M., Periago, M.E., & Baldo, D. (2016a) Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Diversity and Distributions 22: 12121219.Google Scholar
Nori, J., Moreno Azócar, D.L., Cruz, F.B., Bonino, M.F. & Leynaud, G.C. (2016b) Translating niche features: modelling differential exposure of Argentine reptiles to global climate change. Austral Ecology 41: 373381.Google Scholar
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., George, V., Powell, N., Underwood, E.C., Jennifer, A.D., Itoua, I., Strand, H.E. et al. (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51: 933938.Google Scholar
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231259.Google Scholar
Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H., Roberts, C.M. & Sexton, J.O. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344: 1246752.Google Scholar
Pimm, S.L. & Raven, P. (2000) Biodiversity. Extinction by numbers. Nature 403: 843845.CrossRefGoogle ScholarPubMed
Powney, G.D., Grenyer, R., Orme, C.D.L., Owens, I.P.F. & Meiri, S. (2010) Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecology and Biogeography 19: 386396.Google Scholar
Pressey, R., Whish, G., Barrett, T. & Watts, M. (2002) Effectiveness of protected areas in north-eastern New South Wales: recent trends in six measures. Biological Conservation 106: 5769.Google Scholar
Pressey, R.L., Visconti, P. & Ferraro, P.J. (2015) Making parks make a difference: poor alignment of policy, planning and management with protected-area impact, and ways forward. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 370: 119.Google Scholar
Rangel, T.F. & Loyola, R.D. (2012) Labeling ecological niche models. Natureza & Conservação 10: 119126.CrossRefGoogle Scholar
Rodrigues, A.S.L., Andelman, S.J., Bakarr, M.I., Boitani, L., Brooks, T.M., Cowling, R.M., Fishpool, L.D.C., Da Fonseca, G.A.B., Gaston, K.J., Hoffmann, M. et al. (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428: 640643.Google Scholar
Rodrigues, A.S.L., Brooks, T.M., Butchart, S.H.M., Chanson, J., Cox, N., Hoffmann, M. & Stuart, S.N. (2014) Spatially explicit trends in the global conservation status of vertebrates. PLoS ONE 9: e113934.Google Scholar
Sarkar, S. & Illoldi-Rangel, P. (2010) Systematic conservation planning: an updated protocol. Natureza Conservação 8: 1926.Google Scholar
Schneider, A., Friedl, M. & Potere, D. (2009) A new map of global urban extent from MODIS satellite data. Environmental Research Letters 4: 044003.Google Scholar
Sinervo, B., Méndez-de-la-Cruz, F., Miles, D.B., Heulin, B., Bastiaans, E., Villagrán-Santa Cruz, M., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M.L., Meza-Lázaro, R.N. et al. (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328: 894899.Google Scholar
Szumik, C., Aagesen, L., Casagranda, D., Arzamendia, V., Baldo, D., Claps, L.E., Cuezzo, F., Diaz Gomez, J.M., Di Giacomo, A. et al. (2012) Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. Cladistics 28: 317329.Google Scholar
Thuiller, A.W., Georges, D. & Engler, R. (2013) Package ‘biomod2’ [www document]. URL http://cran.r-project.org/web/packages/biomod2/index.html Google Scholar
Thuiller, W., Brotons, L., Araujo, M.B. & Lavorel, S. (2004) Effects of restricting environmental range of data to project current and future species distributions. Ecography 27: 165172.Google Scholar
Torres, R., Gasparri, N.I., Blendinger, P.G. & Grau, H.R. (2014) Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: a hierarchical integrative multi-taxa study. Regional Environmental Change 14: 15491561.Google Scholar
Varela, S., Mateo, R.G., García-Valdés, R. & Fernández-González, F. (2014) Macroecología y ecoinformática: sesgos, errores y predicciones en el modelado de distribuciones. Ecosistemas 23: 4653.Google Scholar
Venter, O., Fuller, R.A., Segan, D.B., Carwardine, J., Brooks, T., Butchart, S.H.M., Di Marco, M., Iwamura, T., Joseph, L., O'Grady, D. et al. (2014) Targeting global protected area expansion for imperiled biodiversity. PLoS Biology 12: e1001891.Google Scholar
Volante, J.N., Mosciaro, M.J., Gavier-Pizarro, G.I. & Paruelo, J.M. (2016) Agricultural expansion in the Semiarid Chaco: poorly selective contagious advance. Land Use Policy 55: 154165.Google Scholar
Watson, J.E.M., Dudley, N., Segan, D.B. & Hockings, M. (2014) The performance and potential of protected areas. Nature 515: 6773.Google Scholar
Woodley, S., Bertzky, B. & Crawhall, N. (2012) Meeting Aichi Target 11: what does success look like for protected area systems. Parks, the International Journal of Protected Areas and Conservation 18: 2336.Google Scholar
Supplementary material: PDF

Nori supplementary material

Figure S1

Download Nori supplementary material(PDF)
PDF 48.7 KB
Supplementary material: PDF

Nori supplementary material

Appendix S1

Download Nori supplementary material(PDF)
PDF 855 KB
Supplementary material: PDF

Nori supplementary material

Appendix S2

Download Nori supplementary material(PDF)
PDF 850.2 KB
Supplementary material: File

Nori supplementary material

Table S1

Download Nori supplementary material(File)
File 17.5 KB
Supplementary material: PDF

Nori supplementary material

Table S2

Download Nori supplementary material(PDF)
PDF 227 KB