Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T16:30:22.543Z Has data issue: false hasContentIssue false

Recurrent wildfires drive rapid taxonomic homogenization of seasonally flooded Neotropical forests

Published online by Cambridge University Press:  21 March 2018

ANA PAULA G. DA SILVA
Affiliation:
Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, PO Box 08, 78690-000 Nova Xavantina, MT, Brazil
HENRIQUE A. MEWS
Affiliation:
Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, PO Box 500, 69920-000 Rio Branco, AC, Brazil
BEN HUR MARIMON-JUNIOR
Affiliation:
Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, PO Box 08, 78690-000 Nova Xavantina, MT, Brazil
EDMAR A. DE OLIVEIRA
Affiliation:
Programa de Pós-graduação em Biodiversidade e Biotecnologia, Rede BIONORTE, Campus de Nova Xavantina-MT, PO Box 08, 78690-000 Nova Xavantina, MT, Brazil
PAULO S. MORANDI
Affiliation:
Programa de Pós-graduação em Biodiversidade e Biotecnologia, Rede BIONORTE, Campus de Nova Xavantina-MT, PO Box 08, 78690-000 Nova Xavantina, MT, Brazil
IMMA OLIVERAS
Affiliation:
Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
BEATRIZ S. MARIMON*
Affiliation:
Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, PO Box 08, 78690-000 Nova Xavantina, MT, Brazil Programa de Pós-graduação em Biodiversidade e Biotecnologia, Rede BIONORTE, Campus de Nova Xavantina-MT, PO Box 08, 78690-000 Nova Xavantina, MT, Brazil
*
*Correspondence: Professor Beatriz S. Marimon email: [email protected]

Summary

Recent evidence has shown that most tropical species are declining as a result of global change. Under this scenario, the prevalence of tolerant species to disturbances has driven many biological communities towards biotic homogenization (BH). However, the mechanisms that drive communities towards BH are not yet thoroughly understood. We tested effects of recurring wildfires on woody species richness and composition in six seasonally flooded Amazonian forests and whether these fires reduce species composition (i.e., taxonomic homogenization) over short periods of time. Our results show that these forests are undergoing taxonomic homogenization in response to recurring fire events. Species richness decreased as a result of local extinctions and floristic similarity increased among forest communities. Fire was selecting tolerant (‘winner’) species and eliminating the more sensitive (‘loser’) species. BH leads to biodiversity erosion, which can deeply alter ecosystem processes such as productivity, nutrient cycling and decomposition, resulting in important consequences for conservation.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary material can be found online at https://doi.org/10.1017/S0376892918000127

References

REFERENCES

Alencar, A.A., Brando, P.M., Asner, G.P. & Putz, F.E. (2015) Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecological Applications 25: 14931505.Google Scholar
Aragão, L.E.O.C., Malhi, Y., Barbier, N., Lima, A., Shimabukuro, Y., Anderson, L. & Saatchi, S. (2008) Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical Transactions of the Royal Society B 363: 17791785.Google Scholar
Balch, J.K., Nepstad, D., Brando, P.M., Curran, L., Portela, O., Carvalho, O. & Lefebvre, P. (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology 14: 22762287.Google Scholar
Balch, J.K., Nepstad, D.C., Curran, L.M., Brando, P.M., Portela, O., Guilherme, P., Reuning-Scherer, J.D. & Carvalho, O. Jr (2011) Size, species, and fire characteristics predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecology and Management 261: 6877.Google Scholar
Balch, J.K., Massad, T., Brando, P.M., Nepstad, D.C. & Curran, L.C. (2013) Effects of high-frequency understory fires on woody plant regeneration in southeastern Amazonian forests. Philosophical Transactions of the Royal Society B 368: 20120157.Google Scholar
Barbosa, D.C.F., Marimon, B.S., Lenza, E., Marimon-Júnior, B.H., Oliveira, E.A. & Maracahipes, L. (2011) Estrutura da vegetação lenhosa em dois fragmentos naturais de florestas inundáveis (impucas) no Parque Estadual do Araguaia, Mato Grosso. Revista Árvore 35: 457471.Google Scholar
Barlow, J., Peres, C.A., Lagan, B.O. & Haugaasen, T. (2003) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters 6: 68.Google Scholar
Barlow, J. & Peres, C.A. (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B 363: 17871794.Google Scholar
Berenguer, E., Ferreira, J., Gardner, T.A., Aragão, L.E.O.C., De Camargo, P.B., Cerri, C.E., Durigan, M., Oliveira Junior, R.C., Vieira, I.C.G. & Barlow, J. (2014) A large-scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology 20: 37133726.Google Scholar
Brito, E.R., Martins, S.V., Oliveira-Filho, A.T., Silva, E. & Silva, A.F. (2008) Estrutura fitossociológica de um fragmento natural de floresta inundável em área de Campo Sujo, Lagoa da Confusão, Tocantins. Acta Amazonica 38: 379386.Google Scholar
Cochrane, M.A., Alencar, A., Schulze, M.D., Souza, C.R. Jr, Nepstad, D., Lefebvre, P. & Davidson, E.A. (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284: 18321835.Google Scholar
Cochrane, M.A. & Schulze, M.D. (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31: 216.Google Scholar
Cochrane, M.A. & Laurance, W.F. (2002) Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology 18: 311325.Google Scholar
Davidson, E.A., Araújo, A.C., Artaxo, P., Balch, J.K., Brown, I.F., Bustamante, M.M.C., Coe, M.T., DeFries, R.S., Keller, M., Longo, M., Munger, J.W., Schroeder, W., Soares-Filho, B.S., Souza, C.M. Jr & Wofsy, S.C. (2012) The Amazon basin in transition. Nature 481: 321328.Google Scholar
Devisscher, T., Malhi, Y., Rojas Landívar, V.D. & Oliveras, I. (2016) Understanding ecological transitions under recurrent wildfire: a case study in the seasonally dry tropical forests of Chiquitania (Bolivia). Forest Ecology and Management 360: 273286.Google Scholar
Durigan, G. & Ratter, J.A. (2016) The need for a consistent fire policy for Cerrado conservation. Journal of Applied Ecology 53: 1115.Google Scholar
Eiten, G. (1985) Vegetation near Santa Teresinha, NE Mato Grosso. Acta Amazonica 15: 275301.Google Scholar
Flores, B.M., Piedade, F.M.T. & Nelson, B.W. (2014) Fire disturbance in Amazonian blackwater floodplain forest. Plant Ecology & Diversity 7: 319327.Google Scholar
Flores, B.M., Fagoaga, R., Nelson, B.W. & Holmgren, M. (2016) Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. Journal of Applied Ecology 53: 15971603.Google Scholar
Flores, B.M., Holmgren, M., Xu, C., van Nes, E.H., Jakovac, C.C., Mesquita, R.C.G. & Scheffer, M. (2017) Floodplains as an Achilles’ heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences of the United States of America 114: 44424446.Google Scholar
Gatti, L.V., Gloor, M., Miller, J.B., Doughty, C.E., Malhi, Y., Domingues, L.G., Basso, L.S., Martinewski, A., Correia, C.S.C., Borges, V.F., Freitas, S., Braz, R., Anderson, L.O., Rocha, H., Grace, J., Phillips, O.L. & Lloyd, J. (2014) Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506: 7680.Google Scholar
Gloor, M., Brienen, R.J.W., Galbraith, D., Feldpausch, T.R., Schöngart, J., Guyot, J.-L., Espinoza, J.C., Lloyd, J. & Phillips, O.L. (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophysical Research Letters 40: 17291733.Google Scholar
Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 19.Google Scholar
Krebs, C.J. (2014) Ecological Methodology (3rd ed.) [www document]. URL www.zoology.ubc.ca/~krebs/books.htmlGoogle Scholar
Kühn, I. & Klotz, S. (2006) Urbanization and homogenization – comparing the floras of urban and rural areas in Germany. Biological Conservation 127: 292300.Google Scholar
Lista de Espécies da Flora do Brasil (2015). Brazilian Flora Species List. Jardim Botânico do Rio de Janeiro [www document]. URL http://floradobrasil.jbrj.gov.brGoogle Scholar
Lôbo, D., Leão, T., Melo, F.P.L., Santos, A.M.M. & Tabarelli, M. (2011) Forest fragmentation drives Atlantic forest of northeastern Brazil to biotic homogenization. Diversity and Distributions 17: 287296.Google Scholar
Maracahipes, L.S., Marimon, B.S., Lenza, E., Marimon-Junior, B.H., Oliveira, E.A., Mews, H.A., Gomes, L. & Feldpausch, T.R. (2014) Post-fire dynamics of woody vegetation in seasonally flooded forests (impucas) in the Cerrado–Amazonian Forest transition zone. Flora 209: 260270.Google Scholar
Marengo, J.A., Tomasella, J., Alves, L.M., Soares, W.R. & Rodriguez, D.A. (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophysical Research Letters 38: L12703.Google Scholar
Marimon, B.S. & Lima, E.S. (2001) Caracterização fitofisionômica e levantamento florístico preliminar no Pantanal dos rios Mortes–Araguaia, Cocalinho, Mato Grosso, Brasil. Acta Botanica Brasilica 15: 213229.Google Scholar
Marimon, B.S., Marimon-Júnior, B.H., Lima, H.S., Jancoski, H.S., Franczak, D.D., Mews, H.A. & Moresco, M.C. (2008) Pantanal do Araguaia – Ambiente e Povo: Guia de Ecoturismo. Cáceres, Brazil: UNEMAT.Google Scholar
Marimon, B.S., Marimon-Junior, B.H., Mews, H.A., Jancoski, H.S., Franczak, D.D., Lima, H.S., Lenza, E., Rossete, A.N. & Moresco, M.C. (2012). Florística dos campos de murundus do Pantanal do Araguaia, Mato Grosso, Brasil. Acta Botanica Brasilica 26: 181196.Google Scholar
Marimon, B.S., Colli, G.R., Marimon-Junior, B.H. Mews, H.A., Eisenlohr, P.V., Feldpausch, T.R. & Phillips, O.L. (2015) Ecology of floodplain campos de murundus savanna in Southern Amazonia. International Journal of Plant Sciences 7: 670681.Google Scholar
Martini, P.R. (2006) Áreas Úmidas da América do Sul Registradas em Imagens de Satélites. In: Geotecnologia no Pantanal, eds. Silva, J.S.V. & Abdon, M.M., pp. 876882. Campo Grande, Brazil: Embrapa Informática Agropecuária/INPE.Google Scholar
Martins, I.C.M., Soares, V.P., Silva, E. & Brites, R.S. (2002) Diagnóstico ambiental no contexto da paisagem de fragmentos florestais naturais ‘ipucas’ no município de Lagoa da Confusão, Tocantins. Revista Árvore 26: 299309.Google Scholar
Grosso, Mato (2007) Plano de Manejo do Parque Estadual do Araguaia. Secretaria de Estado do Meio Ambiente – SEMA, Coordenadoria de Unidade de Conservação – CUC. Cuiabá, Brazil [ www document]. URL www.sema.mt.gov.br/attachments/article/155/cuco_PM_PEA.pdfGoogle Scholar
McKinney, M.L. & Lockwood, J.L. (1999) Biotic homogenization, a few winners replacing many losers in the next mass extinction. Trends in Ecology and Evolution 14: 450453.Google Scholar
McKinney, M.L. (2006) Urbanization as a major cause of biotic homogenization. Biological Conservation 127: 247260.Google Scholar
Nangendo, G., Stein, A., ter Steege, H. & Bongers, F. (2005) Changes in woody plant composition of three vegetation types exposed to a similar fire regime for over 46 years. Forest Ecology and Management 217: 351364.Google Scholar
Nepstad, D.C., Stickler, C.M., Soares-Filho, B. & Merry, F. (2008) Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philosophical Transactions of the Royal Society B 363: 17371746.Google Scholar
Nepstad, D.C., Verissímo, A., Alencar, A., Nobre, C., Lima, E., Lefebore, P. Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E., Cochrane, M. & Brooks, V. (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398: 505508.Google Scholar
Neves, L.F.S. (2015) Dinâmica Espaço-temporal de Fogo e Impactos na Cobertura da Terra no Parque Estadual do AraguaiaMT. MSc thesis. Cáceres, Brazil: Universidade do Estado de Mato Grosso.Google Scholar
Olden, J.D. (2006) Biotic homogenization: a new research agenda for conservation biogeography. Journal of Biogeography 33: 20272039.Google Scholar
Olden, J.D. & Poff, N.L. (2003) Toward a mechanistic understanding and prediction of biotic homogenization. The American Naturalist 162: 442460.Google Scholar
Olden, J.D. & Rooney, T.P. (2006) On defining and quantifying biotic homogenization. Global Ecology and Biogeography 15: 113120.Google Scholar
Olden, J.D., Poff, N.L., Douglas, M.R., Douglas, M.E. & Fausch, K.D. (2004) Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution 19: 1824.Google Scholar
Oliveras, I., Malhi, Y., Salinas, N., Huaman, V., Urquiaga-Flores, E., Kala-Mamani, J., Quintano-Loaiza, J.A., Cuba-Torres, I., Lizarraga-Morales, N. & Román-Cuesta, R.M. (2014) Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline. Plant Ecology & Diversity 7: 329340.Google Scholar
Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 3742.Google Scholar
Pinard, M.A., Putz, F.E., Rumiz, D., Guzman, R. & Jardim, A. (1999) Ecological characterization of tree species for guiding forest management decisions in seasonally dry forests in Lomerio, Bolivia. Forest Ecology and Management, 113: 201213.Google Scholar
Pinto, J.R.R., Mews, H.A., Jancoski, H.S., Marimon, B.S. & Bomfim, B.O. (2014) Woody vegetation dynamics in a floodplain campo de murundus in Central Brazil. Acta Botanica Brasilica 28: 489496.Google Scholar
Pivello, V.R. (2011). The use of fire in the Cerrado and Amazonian rainforests of Brazil: past and present. Fire Ecology 7: 2439.Google Scholar
Ratter, J.A. (1987) Notes on the vegetation of the Parque Nacional do Araguaia (Brazil). Notes from the Royal Botanic Garden Edinburgh 44: 311342.Google Scholar
Sala, O.E., Chapin, F.S. III, Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M. & Wall, D.H. (2000) Global biodiversity scenarios for the year 2100. Science 287: 17701774.Google Scholar
Santos, A.R. & Nelson, B.W. (2013). Leaf decomposition and fine fuels in floodplain forests of the Rio Negro in the Brazilian Amazon. Journal of Tropical Ecology 29: 455458.Google Scholar
Silva, F.A.M., Assad, E.D. & Evangelista, B.A. (2008) Caracterização climática do Bioma Cerrado. In: Cerrado: Ecologia e Flora, eds. Sano, S.M., Almeida, S.P. & Ribeiro, J.F., pp. 6988. Planaltina, Brazil: EMBRAPA–CPAC.Google Scholar
Silveira, J.M., Louzada, J., Barlow, J., Andrade, R., Mestre, L., Solar, R., Lacau, S. & Cochrane, M.A. (2016) A multi-taxa assessment of biodiversity change after single and recurrent wildfires in a Brazilian Amazon forest. Biotropica 48: 170180.Google Scholar
Silvério, D.V., Brando, P.M., Balch, J.K., Putz, F.E., Nepstad, D.C., Oliveira–Santos, C. & Bustamante, M.C.B. (2013) Testing the Amazon savannization hypothesis: fire effects on invasion of a Neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society B 368: 20120427.Google Scholar
Slik, J.W., Verburg, R.W. & Kebler, P.J.A. (2002) Effects of fire and selective logging on the tree species composition of lowland dipterocarp forest in East Kalimantan, Indonesia. Biodiversity and Conservation 11: 8598.Google Scholar
Smart, S.M., Thompson, K., Marrs, R.H., Le Duc, M.G., Maskel, L.C. & Leslie, G.F. (2006) Biotic homogenization and changes in species diversity across human-modified ecosystems. Proceedings the Royal of Society B 273: 26592665.Google Scholar
Stark, N. & Jordan, C.F. (1978) Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59: 434437.Google Scholar
Tabarelli, M., Aguiar, A.V., Ribeiro, M.C., Metzger, J.P. & Peres, C.A. (2010) Prospects for biodiversity conservation in the Atlantic Forest, lessons from aging human-modified landscapes. Biological Conservation 143: 23282340.Google Scholar
Tabarelli, M., Peres, C.A. & Melo, F.P.L. (2012) The ‘few winners and many losers’ paradigm revisited: emerging prospects for tropical forest biodiversity. Biological Conservation 155: 136140.Google Scholar
ter Steege, H., Pitman, N.C.A., Sabatier, D., Baraloto, C., Salomão, R.P., Guevara, J.E., Phillips, O.L., Castilho, C.V., Magnusson, W.E., Molino, J.F., Monteagudo, A., Vargas, P.N., Montero, J.C., Feldpausch, T.R., Coronado, E.N.H., Tim, J., Mostacedo, B., Vasquez, R., Assis, R.L., Terborgh, J., Wittmann, F., Andrade, A., Laurance, W.F., Laurance, S.G.W., Marimon, B.S., Marimon, B.H. Jr, Vieira, I.C.G., Amaral, I.L., Brienen, R., Castellanos, H., López, D.C., Duivenvoorden, J.F., Mogollón, H.F., Matos, F.D.A., Dávila, N., García-Villacorta, R., Diaz, P.R.S., Costa, F., Emilio, T., Levis, C., Schietti, J., Souza, P., Alonso, A., Dallmeier, F., Montoya, A.J.D., Piedade, M.T.F., Araujo-Murakami, A., Arroyo, L., Gribel, R., Fine, P.V.A., Peres, C.A., Toledo, M., Aymard, C.G.A., Baker, T.R., Cerón, C., Engel, J., Henkel, T.W., Maas, P., Petronelli, P., Stropp, J., Zartman, C.E., Daly, D., Neill, D., Silveira, M., Paredes, M.R., Chave, J., Filho, D.A.L., Jørgensen, P.M., Fuentes, A., Schöngart, J., Valverde, F.C., Di Fiore, A., Jimenez, E.M., Peñuela Mora, M.C., Phillips, J.F., Rivas, G., van Andel, T.R., von Hildebrand, P., Hoffman, B., Zent, E. L., Malhi, Y., Prieto, A., Rudas, A., Ruschell, A.R., Silva, N., Vos, V., Zent, S., Oliveira, A.A., Schutz, A.C., Gonzales, T., Nascimento, M.T., Ramirez-Ângulo, H., Sierra, R., Tirado, M., Medina, M.N.U., van der Heijden, G., Vela, C.I.A., Vilanova Torre, E., Vriesendorp, C., Wang, O., Young, K. R., Baider, C., Balslev, H., Ferreira, C., Mesones, I., Torres-Lezama, A., Giraldo, L.E.U., Zagt, R., Alexiades, M.N., Hernandez, L., Huamantupa-Chuquimaco, I., Milliken, W., Cuenca, W.P., Pauletto, D., Sandoval, E.V., Gamarra, L. V., Dexter, K.G., Feeley, K., Lopez-Gonzalez, G. & Silman, M.R. (2013) Hyperdominance in the Amazonian tree flora. Science 342: 325342.Google Scholar
Veldman, J.W. & Putz, F.E. (2011) Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biological Conservation 144: 14191429.Google Scholar
Supplementary material: File

Da Silva et al. supplementary material

Table S1

Download Da Silva et al. supplementary material(File)
File 28 KB