Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T03:24:34.145Z Has data issue: false hasContentIssue false

Phytoplankton of an Acidic Lake, and Its Responses to Experimental Alterations of pH

Published online by Cambridge University Press:  24 August 2009

Norman David Yan
Affiliation:
Ontario Ministry of the Environment, Resources Road, Islington, Ontario, Canada
Pamela Stokes
Affiliation:
Associate Professor of Botany and Associate Director, Institute for Environmental Studies, University of Toronto, Toronto, Ontario, Canada.

Extract

Carlyle Lake is typical of north-temperate Canadian Shield lakes both morphometrically and in its thermal and oxygen structure; however, the Lake is chemically unusual. Input of acidic melt-water in the spring of 1974 depressed the pH of the Lake to 4.5. The buffering capacity of the Lake has been reduced to such a degree that summer pH levels are about 5.0.

Despite this relatively high acidity, the biomass of the phytoplankton community is not low for an oligotrophic circumneutral lake. Although some evidence exists that phytoplankton community biomass is reduced in lakes of pH about 4.5 or below, no such reduction was observed in Carlyle Lake. However, as the numbers of phytoplankton species are reduced when lake pH levels fall below about 5.6, it would appear that community diversity is a more sensitive indicator of acidification of lakes than is community biomass.

Type
Main Papers
Copyright
Copyright © Foundation for Environmental Conservation 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlstrom, E. H. (1937). Studies on variability in the genus Dinobryon (Mastigophora). Trans. Amer. Micros. Soc, 56, pp. 139–59.CrossRefGoogle Scholar
Almer, B., Dickson, W., EkströM, C. & HörnströM, E. (1974). Effects of acidification on Swedish lakes. Ambio, 3, pp. 3036.Google Scholar
Armstrong, F. A. J. & Schindler, D. W. (1971). Preliminary chemical characterization of waters in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Bd Canada, 28, pp. 171–87.CrossRefGoogle Scholar
Beamish, R. J. (1974). Loss offish populations from unexploited remote lakes in Ontario, Canada, as a consequence of atmospheric fallout of acid. Water Res., 8, pp. 8595.CrossRefGoogle Scholar
Beamish, R. J. & Harvey, H. H. (1972). Acidification of the La Cloche Mountain lakes, Ontario, and resulting fish mortalities. J. Fish. Res. Bd Canada, 29, pp. 1, 131–43.CrossRefGoogle Scholar
Bender, M. E. & Jordon, R. A. (1970). Plastic enclosure versus open-lake productivity measurements. Trans. Amer. Fish. Soc, 99, pp. 607–10.2.0.CO;2>CrossRefGoogle Scholar
Boyce, F. M. (1974). Mixing within experimental enclosures: a cautionary note on the limnocorral. J. Fish. Res. Bd Canada, 31, pp. 1,400–5.CrossRefGoogle Scholar
H.Braekke, F. Braekke, F. (Ed.) (1976). Impact of Acid Precipitation on Forest and Freshwater Ecosystems in Norway. Norwegian Forest Research Institute: SNSF Project Research Rep. No. 6, 1432 As-NLH, Norway: 111 pp.Google Scholar
Briggs, R. T. (1972). SO: Acid in the sky. Ecologist, 2, pp. 1823.Google Scholar
Brosset, C. (1973). Air-borne acid. Ambio, 2, pp. 29.Google Scholar
Cassin, P. E. (1974). Isolation, growth and physiology of acidophilic chlamydomonads. J. Phycol., 10, pp. 439–47.CrossRefGoogle Scholar
Conroy, N., Hawley, K., Keller, W. & Lafrance, C. (1975). Influences of the atmosphere on lakes in the Sudbury area. Proc. 1st Special Symp. on Atmospheric Contributions to the Chemistry of Lake Waters (Int. Assoc. Gt Lakes Res.), pp. 146–65.Google Scholar
T.Edmondson, W. Edmondson, W. (Ed) (1959). Fresh-water Biology (2nd edn). John Wiley, New York, N.Y.: xvi + 1248 pp.Google Scholar
Findlay, D. L. & Kling, H. J. (1975). Seasonal successions of phytoplankton in seven lake-basins in the Experimental Lakes Area, northwestern Ontario, following artificial eutrophication. Env. Can., Fish and Mar. Serv. Tech. Rep. No. 513, 53 pp.Google Scholar
Galloway, J. N., Likens, G. E. & Edgerton, E. S. (1976). Hydrogen-ion speciation in the acid precipitation of the northeastern United States. Pp. 383–96 in Proc. 1st Int. Symp. on Acid Precipitation and the Forest Ecosystem (Ed. Dochinger, L. S. & Seliga, T. A.). U.S. Dept Agr. For. Serv. Gen. Tech. Rep. No. 23, xiii + 1,074 pp.CrossRefGoogle Scholar
Goldman, J. C. (1973). Carbon dioxide and pH: Effect on species succession of Algae. Science, 182, 306–7.CrossRefGoogle ScholarPubMed
Golterman, H. L. & Clymo, R. S. (1971). Methods for Chemical Analysis of Fresh Waters. I.B.P. Handbook No. 7 (Blackwell Scientific Publications, Oxford & Edinburgh): xvi + 166 pp.Google Scholar
Haapala, H., Sepponen, P., & Meskus, E. (1975). Effect of spring floods on water acidity in the Kiiminkijoki, Finland. Oikos, 26, pp. 2631.CrossRefGoogle Scholar
Hörnström, E., EkströM, C, Miller, U. & Dickson, W. (1973). Forsurningens inverkan på västkustsjöar. Information fran Sotvattens-Laboratoriet, Drottningholm, No. 4,81 pp.Google Scholar
Huber-Pestalozzi, G. (1941). Das Phytoplankton der Silsswassers (Die Binnengewasser Band XVI). E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany: 2(i) Chrysophyceen Farblose Flagellaten Heterokonten, 365 pp.Google Scholar
Hutchinson, G. E. (1957). A Treatise on Limnology, Vol. 1: Geography, Physics and Chemistry. John Wiley. New York, N.Y.: xiv + 1,015 pp.Google Scholar
Irenee-Marie, Frėre (1938). Flore Desmidiale de la Région de Montréal. Laprairie, Canada: 547 pp.Google Scholar
Jordan, R. A. & Bender, M. E. (1973). An in situ Evaluation of Nutrient Effects in Lakes. Environmental Protection Agency Ecological Research Series, EPA R3–73–O18, Washington, D.C.: 227 pp.Google Scholar
Kling, H. J. & Holmgren, S. K. (1972). Species composition and seasonal distribution in the Experimental Lakes Area, northwestern Ontario. Env. Can., Fish. Res. Bd Canada, Tech. Rep. No. 337, 51 pp., illustr.Google Scholar
Kramer, J. R. (1973). Fate of Atmospheric Sulphur Dioxide and Related Substances as Indicated by Chemistry of Precipitation. Dept of Geology, McMaster University, Hamilton, Ontario, and Ontario Ministry of the Environment: 143 pp., (mimeogr.).Google Scholar
Kwiatkowski, R. E. & Roff, J. C. (1976). Effect of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. Can. J. Bot., 54, pp. 2,546–61.CrossRefGoogle Scholar
Lund, J. W. G., Kipling, C. & Lecren, E. D. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia, 11, pp. 142–70CrossRefGoogle Scholar
Ostrovsky, M. L. & Duthie, H. C. (1975). Primary productivity and phytoplankton of lakes on the eastern Canadian Shield. Verh. Intern. Verein. Limnol., 19, pp. 732–8.Google Scholar
Patrick, R. & Reimer, C. W., (1966). The Diatoms of the United States, Vol. 1. (Monog. of the Acad. Nat. Sci. of Philadelphia, No. 13.) Livingstone, Philadelphia, Pennsylvania: xi + 688 pp., illustr.Google Scholar
Prescott, G. W. (1962). Algae of the Western Great Lakes Area. W. C. Brown, Dubuque, Iowa: xiii+977 pp., illustr.Google Scholar
Rehakova, H. (1969). Die Variabilitat der Arten die Gattung Oocystis A. Braun. Pp. 145–96 in Studies in Phycology (Ed. Fott, B.). E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany: 304 pp., illustr.Google Scholar
Scheider, W. A., Adamski, J. & Paylor, T. M. (1975). Reclamation of Acidified Lakes Near Sudbury, Ontario. Ontario Ministry of Environment: ix + 129 pp.Google Scholar
Scheider, W. A., Cave, B. & Jones, J., (1976). Reclamation of Acidified Lakes Near Sudbury, Ontario, by Neutralization and Fertilization. Ontario Ministry of Environment: 56 pp.Google Scholar
Schindler, D. W. (1971). Light, temperature, and oxygen regimes of selected lakes in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. Bd Canada, 28(2), pp. 157–69.CrossRefGoogle Scholar
Schindler, D. W. & Holmgren, S. K. (1971). Primary production and phytoplankton of the experimental lakes area, northwestern Ontario, and other low-carbonate waters, and a liquid scintillation method for determining 14C activity in photosynthesis. J. Fish. Res. Bd Canada, 28(2), pp. 189201.Google Scholar
Schindler, D. W. & Nighswander, J. E. (1970). Nutrient supply and primary productivity in Clear Lake, eastern Ontario. J. Fish. Res. Bd Canada, 27, pp. 2,009–35.CrossRefGoogle Scholar
Schofield, C. L. (1976). Acid precipitation: effects on fishes. Ambio, 5, pp. 228–30.Google Scholar
Shapiro, J., (1973). Blue-green Algae: Why they become dominant. Science, 179, pp. 382–4.Google Scholar
Utermöhl, H. (1958). Zur Vervollkommung der quantitativen Phytoplanktonmethodik. Mitt. Intern. Verein. Limnol., 9, pp. 138.Google Scholar
Willen, T. (1969). Phytoplankton from Swedish Lakes, II: Lake Assjön, 1961–1962. Oikos, 20, pp. 6777.CrossRefGoogle Scholar
Wright, R. F. & Gjessing, E. T. (1976). Acid precipitation: changes in the chemical composition of lakes. Ambio, 5, pp. 219–23.Google Scholar
Yan, N. D. (1975). Acid Precipitation and its Effects on Phytoplankton Communities of Carlyle Lake, Ontario. Unpublished M.Sc. thesis. Department of Botany, University of Toronto, Toronto, Ontario: 116 pp.Google Scholar