Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:36:47.305Z Has data issue: false hasContentIssue false

The legacy of a crowded ocean: indicators, status, and trends of anthropogenic pressures in the California Current ecosystem

Published online by Cambridge University Press:  19 August 2014

KELLY S. ANDREWS*
Affiliation:
Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
GREGORY D. WILLIAMS
Affiliation:
Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
JAMEAL F. SAMHOURI
Affiliation:
Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
KRISTIN N. MARSHALL
Affiliation:
Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
VLADLENA GERTSEVA
Affiliation:
Fishery Resource, Analysis and Monitoring Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
PHILLIP S. LEVIN
Affiliation:
Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
*
*Correspondence: Kelly Andrews e-mail: [email protected]

Summary

As human population size and demand for seafood and other marine resources increase, understanding the influence of human activities in the ocean and on land becomes increasingly critical to the management and conservation of marine resources. In order to account for human influence on marine ecosystems while making management decisions, linkages between various anthropogenic pressures and ecosystem components need to be determined. Those linkages cannot be drawn until it is known how different pressures have been changing over time. This paper identifies indicators and develops time series for 22 anthropogenic pressures acting on the USA's portion of the California Current ecosystem. Time series suggest that seven pressures have decreased and two have increased over the short term, while five pressures were above and two pressures were below long-term means. Cumulative indices of anthropogenic pressures suggest a slight decrease in pressures in the 2000s compared to the preceding few decades. Dynamic factor analysis revealed four common trends that sufficiently explained the temporal variation found among all anthropogenic pressures. This reduced set of time series will be a useful tool to determine whether links exist between individual or multiple pressures and various ecosystem components.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R.W., Landman, J.C. & Cameron, D.M. (1993) The Clean Water Act 20 Years Later. Washington, DC, USA: Island Press.Google Scholar
Ainsworth, C., Samhouri, J., Busch, D., Cheung, W.W., Dunne, J. & Okey, T.A. (2011) Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. ICES Journal of Marine Science: Journal du Conseil 68: 12171229.CrossRefGoogle Scholar
Andersen, T., Carstensen, J., Hernandez-Garcia, E. & Duarte, C.M. (2009) Ecological thresholds and regime shifts: approaches to identification. Trends in Ecology and Evolution 24: 4957.CrossRefGoogle ScholarPubMed
Auth, T.D., Brodeur, R.D., Soulen, H.L., Ciannelli, L. & Peterson, W.T. (2011) The response of fish larvae to decadal changes in environmental forcing factors off the Oregon coast. Fisheries Oceanography 20: 314328.CrossRefGoogle Scholar
Ban, N. & Alder, J. (2008) How wild is the ocean? Assessing the intensity of anthropogenic marine activities in British Columbia, Canada. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 5585.CrossRefGoogle Scholar
Brogle, M.R. (2012) The impacts of population density, and state and national litter prevention programs on marine debris. PhD dissertation. University of South Florida, Tampa, Florida, USA.Google Scholar
Brown, C.J., Saunders, M.I., Possingham, H.P. & Richardson, A.J. (2013) Managing for interactions between local and global stressors of ecosystems. PLoS One 8: e65765.CrossRefGoogle ScholarPubMed
Burnham, K.P. & Anderson, D.R. (1998) Model Selection and Mulitmodel Inference: A Practical Information-Theoretic Approach. New York, NY, USA: Springer Science + Business Media Inc.CrossRefGoogle Scholar
Christiansen, B. (2005) The shortcomings of nonlinear principal component analysis in identifying circulation regimes. Journal of Climate 18: 48144823.CrossRefGoogle Scholar
Clarke, K.R. & Gorley, R.N. (2006) PRIMER v6: User Manual/Tutorial. Plymouth, UK: PRIMER-E.Google Scholar
Crain, C.M., Kroeker, K. & Halpern, B.S. (2008) Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters 11: 13041315.CrossRefGoogle ScholarPubMed
Darling, E.S. & Côté, I.M. (2008) Quantifying the evidence for ecological synergies. Ecology Letters 11: 12781286.CrossRefGoogle ScholarPubMed
Eastwood, P., Mills, C., Aldridge, J., Houghton, C. & Rogers, S. (2007) Human activities in UK offshore waters: an assessment of direct, physical pressure on the seabed. ICES Journal of Marine Science: Journal du Conseil 64: 453463.CrossRefGoogle Scholar
Fulton, E.A., Link, J.S., Kaplan, I.C., Savina-Rolland, M., Johnson, P., Ainsworth, C., Horne, P., Gorton, R., Gamble, R.J. & Smith, A.D.M. (2011) Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish and Fisheries 12: 171188.CrossRefGoogle Scholar
Grusky, D.B., Western, B. & Wimer, C. (2011) The Great Recession. New York, NY, USA: Russell Sage Foundation.Google Scholar
Guerry, A.D., Ruckelshaus, M.H., Arkema, K.K., Bernhardt, J.R., Guannel, G., Kim, C.-K., Marsik, M., Papenfus, M., Toft, J.E. & Verutes, G. (2012) Modeling benefits from nature: using ecosystem services to inform coastal and marine spatial planning. International Journal of Biodiversity Science, Ecosystem Services and Management 8: 107121.CrossRefGoogle Scholar
Halpern, B.S. & Fujita, R. (2013) Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4: art131.CrossRefGoogle Scholar
Halpern, B.S., Kappel, C.V., Selkoe, K.A., Micheli, F., Ebert, C.M., Kontgis, C., Crain, C.M., Martone, R.G., Shearer, C. & Teck, S.J. (2009) Mapping cumulative human impacts to California Current marine ecosystems. Conservation Letters 2: 138148.CrossRefGoogle Scholar
Halpern, B.S., Selkoe, K.A., Micheli, F. & Kappel, C.V. (2007) Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conservation Biology 21: 13011315.CrossRefGoogle ScholarPubMed
Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R. & Watson, R. (2008) A global map of human impact on marine ecosystems. Science 319: 948952.CrossRefGoogle ScholarPubMed
Hayes, K.R., Clifford, D., Moeseneder, C., Palmer, M. & Taranto, T. (2012) National Indicators of Marine Ecosystem Health: Mapping Project. Report prepared for the Australian Government Department of Sustainability, Environment, Water, Population and Communities. CSIRO Wealth from Oceans Flagship, Hobart, Australia.Google Scholar
Hoegh-Guldberg, O. & Bruno, J.F. (2010) The impact of climate change on the world's marine ecosystems. Science 328: 15231528.CrossRefGoogle ScholarPubMed
Holmes, E.E., Ward, E.J. & Scheuerell, M.D. (2012) Analysis of multivariate time-series using the MARSS package. NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd E., Seattle, WA 98112, USA [www document]. URL http://cran.r-project.org/web/packages/MARSS/vignettes/UserGuide.pdf Google Scholar
Houck, O.A. (2002) The Clean Water Act TMDL program: law, policy, and implementation. Environmental Law Institute, Washington, DC, USA.Google Scholar
James, C.A., Kershner, J., Samhouri, J., O’Neill, S. & Levin, P.S. (2012) A methodology for evaluating and ranking water quantity indicators in support of ecosystem-based management. Environmental Management 49: 703719.CrossRefGoogle ScholarPubMed
Kaplan, I.C. & Leonard, J. (2012) From krill to convenience stores: Forecasting the economic and ecological effects of fisheries management on the US West Coast. Marine Policy 36: 947954.CrossRefGoogle Scholar
Kaplan, I.C., Levin, P.S., Burden, M. & Fulton, E.A. (2010) Fishing catch shares in the face of global change: a framework for integrating cumulative impacts and single species management. Canadian Journal of Fisheries and Aquatic Sciences 67: 19681982.CrossRefGoogle Scholar
Kenfack, S.C., Mkankam, K.F., Alory, G., du Penhoat, Y., Hounkonnou, N.M., Vondou, D.A. & Bawe, G.N. (2014) Sea surface temperature patterns in Tropical Atlantic: principal component analysis and nonlinear principal component analysis. Nonlinear Processes Geophysical Discussion 1: 235267.Google Scholar
Kershner, J., Samhouri, J.F., James, C.A. & Levin, P.S. (2011) Selecting indicator portfolios for marine species and food webs: a Puget Sound case study. PLoS One 6.CrossRefGoogle Scholar
Large, S.I., Fay, G., Friedland, K.D. & Link, J.S. (2013) Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures. ICES Journal of Marine Science: Journal du Conseil 70: 755767.CrossRefGoogle Scholar
Lee, N.R. & Kotler, P. (2011) Social marketing: Influencing Behaviors for Good. New York, NY, USA: Sage.Google Scholar
Lefebvre, S.C., Benner, I., Stillman, J.H., Parker, A.E., Drake, M.K., Rossignol, P.E., Okimura, K.M., Komada, T. & Carpenter, E.J. (2012) Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: potential implications of ocean acidification for the carbon cycle. Global Change Biology 18: 493503.CrossRefGoogle Scholar
Leslie, H.M. & McLeod, K.L. (2007) Confronting the challenges of implementing marine ecosystem-based management. Frontiers in Ecology and the Environment 5: 540548.CrossRefGoogle Scholar
Levin, P.S., James, A., Kersner, J., O’Neill, S., Francis, T., Samhouri, J.F. & Harvey, C.J. (2011) The Puget Sound ecosystem: what is our desired future and how do we measure progress along the way? In: Puget Sound Science Update, Chapter 1a [www document]. URL http://www.psp.wa.gov/scienceupdate.php Google Scholar
Levin, P.S., Kaplan, I., Grober-Dunsmore, R., Chittaro, P.M., Oyamada, S., Andrews, K. & Mangel, M. (2009) A framework for assessing the biodiversity and fishery aspects of marine reserves. Journal of Applied Ecology 46: 735742.CrossRefGoogle Scholar
Levin, P.S. & Schwing, F.B. (2011) Technical background for an integrated ecosystem assessment of the California Current: Groundfish, salmon, green sturgeon, and ecosystem health. US Department of Commerce, NOAA Technical Memorandum NMFS-NWFSC-109, USA: 330 pp.Google Scholar
Link, J. (2010) Ecosystem-Based Fisheries Management: Confronting Tradeoffs. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Link, J.S., Brodziak, J.K.T., Edwards, S.F., Overholtz, W.J., Mountain, D., Jossi, J.W., Smith, T.D. & Fogarty, M.J. (2002) Marine ecosystem assessment in a fisheries management context. Canadian Journal of Fisheries and Aquatic Sciences 59: 14291440.CrossRefGoogle Scholar
Lischka, S. & Riebesell, U. (2012) Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Global Change Biology 18: 35173528.CrossRefGoogle Scholar
Maxwell, S.M., Hazen, E.L., Bograd, S.J., Halpern, B.S., Breed, G.A., Nickel, B., Teutschel, N.M., Crowder, L.B., Benson, S. & Dutton, P.H. (2013) Cumulative human impacts on marine predators. Nature Communications 4: art 2688.CrossRefGoogle ScholarPubMed
Naquin, M., Cole, D., Bowers, A. & Walkwitz, E. (2011) Environmental health knowledge, attitudes and practices of students in grades four through eight. ICHPER-SD Journal of Research 6: 4550.Google Scholar
National Marine Fisheries Service (2013) Groundfish essential fish habitat synthesis report. National Marine Fisheries Service/Northwest Fisheries Science Center [www document]. URL http://www.pcouncil.org/wp-content/uploads/D6b_NMFS_SYNTH_ELECTRIC_ONLY_APR2013BB.pdf Google Scholar
R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 [www document]. URL http://www.R-project.org Google Scholar
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S., Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C. & Schellnhuber, H.J. (2009) A safe operating space for humanity. Nature 461: 472475.CrossRefGoogle ScholarPubMed
Rosenberg, A.A. & McLeod, K.L. (2005) Implementing ecosystem-based approaches to management for the conservation of ecosystem services: politics and socio-economics of ecosystem-based management of marine resources. Marine Ecology Progress Series 300: 271274.CrossRefGoogle Scholar
Samhouri, J.F., Lester, S.E., Selig, E.R., Halpern, B.S., Fogarty, M.J., Longo, C. & McLeod, K.L. (2012) Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3: art41.CrossRefGoogle Scholar
Samhouri, J.F., Levin, P.S. & Ainsworth, C.H. (2010) Identifying thresholds for ecosystem-based management. PLoS One 5: 110.CrossRefGoogle ScholarPubMed
Samhouri, J.F., Levin, P.S., James, C.A., Kershner, J. & Williams, G. (2011) Using existing scientific capacity to set targets for ecosystem-based management: a Puget Sound case study. Marine Policy 35: 508518.CrossRefGoogle Scholar
Stelzenmüller, V., Lee, J., South, A. & Rogers, S. (2010) Quantifying cumulative impacts of human pressures on the marine environment: a geospatial modelling framework. Marine Ecology Progress Series 398: 1932.CrossRefGoogle Scholar
Sunda, W.G. & Cai, W.J. (2012) Eutrophication induced CO2-acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric pCO2. Environmental Science and Technology 46: 1065110659.CrossRefGoogle ScholarPubMed
Sydeman, W.J., Santora, J.A., Thompson, S.A., Marinovic, B. & Lorenzo, E.D. (2013) Increasing variance in North Pacific climate relates to unprecedented ecosystem variability off California. Global Change Biology 19: 16621675.CrossRefGoogle ScholarPubMed
Tabachnick, B.G. & Fidell, L.S. (1996) Using Multivariate Statistics. New York, NY, USA: Harper Collins College Publishers.Google Scholar
Teck, S.J., Halpern, B.S., Kappel, C.V., Micheli, F., Selkoe, K.A., Crain, C.M., Martone, R., Shearer, C., Arvai, J., Fischhoff, B., Murray, G., Neslo, R. & Cooke, R. (2010) Using expert judgment to estimate marine ecosystem vulnerability in the California Current. Ecological Applications 20: 14021416.CrossRefGoogle ScholarPubMed
Tenenbaum, J.B., Silva, V.d. & Langford, J.C. (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290: 23192323.CrossRefGoogle ScholarPubMed
USEPA (2011) Municipal solid waste in the United States: 2011 Facts and Figures. US Environmental Protection Agency. Office of Solid Waste. EPA530-R-13-001. [www document]. URL http://www.epa.gov/waste/nonhaz/municipal/pubs/MSWcharacterization_fnl_060713_2_rpt.pdf Google Scholar
Vinebrooke, R.D., Cottingham, K.L., Norberg, J., Scheffer, M., Dodson, S.I., Maberly, S.C. & Sommer, U. (2004) Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104: 451457.CrossRefGoogle Scholar
Wilson, K., Pressey, R.L., Newton, A., Burgman, M., Possingham, H. & Weston, C. (2005) Measuring and incorporating vulnerability into conservation planning. Environmental Management 35: 527543.CrossRefGoogle ScholarPubMed
Zuur, A.F., Fryer, R.J., Jolliffe, I.T., Dekker, R. & Beukema, J.J. (2003 a) Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14: 665685.Google Scholar
Zuur, A.F., Tuck, I.D. & Bailey, N. (2003 b) Dynamic factor analysis to estimate common trends in fisheries time series. Canadian Journal of Fisheries and Aquatic Sciences 60: 542552.CrossRefGoogle Scholar
Supplementary material: File

Andrews Supplementary Material

Appendix 1

Download Andrews Supplementary Material(File)
File 54.1 KB
Supplementary material: File

Andrews Supplementary Material

Appendix 2

Download Andrews Supplementary Material(File)
File 2.3 MB
Supplementary material: File

Andrews Supplementary Material

Appendix 3

Download Andrews Supplementary Material(File)
File 715.6 KB