Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T21:20:03.988Z Has data issue: false hasContentIssue false

Jaguars and wild pigs indicate protected area connectivity in the south-east Atlantic Forest (Brazil)

Published online by Cambridge University Press:  30 January 2023

Maitê Packer Silva*
Affiliation:
Institute of Science and Technology, Sao Paulo State University – Unesp, São José dos Campos, 12247-004, São Paulo, Brazil
Klécia Gili Massi
Affiliation:
Institute of Science and Technology, Sao Paulo State University – Unesp, São José dos Campos, 12247-004, São Paulo, Brazil
Rogério Galante Negri
Affiliation:
Institute of Science and Technology, Sao Paulo State University – Unesp, São José dos Campos, 12247-004, São Paulo, Brazil
Felipe Pedrosa
Affiliation:
Mão na Mata – Manejo e Soluções Ambientais, São Paulo, 05350-000, Brazil
*
Author for correspondence: Maitê Packer Silva, Email: [email protected]

Summary

The Atlantic Forest of South America has undergone major changes due to urban and agriculture/pasture extension, resulting in a highly fragmented biome. Protected areas, created to ensure the biodiversity conservation of this biome, need to be connected for long-term landscape integrity. We aimed to quantify connectivity among protected areas in the south-east Atlantic Forest using two species with different environmental requirements: a threatened species with high requirements, the jaguar Panthera onca; and an exotic species with low requirements, the wild pig Sus scrofa. Our methods included expert opinion, and Circuitscape and least-cost-path analyses. We hypothesized that the patchy and altered landscape would not support the connectivity of jaguars but would allow wild pigs to transit. In fact, we found connectivity for both species, but there were more connectivity opportunities for wild pigs. The connection between Serra do Mar (and Serra do Mar state park) and Serra da Mantiqueira (Mantiqueira Mosaic) is narrow but possible to traverse through some protected areas of sustainable use and private reserves, highlighting the importance of these to structural landscape connectivity for the studied species in this region. The same connectivity that allows the transit of the native jaguar with high environmental requirements also allows the invasive wild pig to move through the landscape, which is worrisome.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvares, CA, Stape, JL, Sentelhas, PC, Gonçalves, JLM, Sparovek, G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711728.CrossRefGoogle Scholar
Baudry, J, Merriam, HG (1988) Connectivity and connectedness: functional versus structural patterns in landscapes. In: KF, Schreiber (ed.), Connectivity in Landscape Ecology (pp. 2328). Paderborn, Germany: Ferdinand Schöningh.Google Scholar
Begon, M, Townsend, CR, Harper, JL (2006) Ecology: From Individuals to Ecosystems. Liverpool, UK: Blackwell Publishing.Google Scholar
Borrajo, NG, Bao, JVL, Palomares, F (2017) Spatial ecology of jaguars, pumas, and ocelots: a review of the state of knowledge. Mammal Review 47: 6275.CrossRefGoogle Scholar
Brashares, JS, Arcese, P, Sam, MK (2001) Human demography and reserve size predict wildlife extinction in West Africa. Proceedings of the Royal Society of London B 268: 24732478.CrossRefGoogle ScholarPubMed
Brasil (2000) Lei nº 9.985, de 18 de julho de 2000 [www document]. URL http://www.planalto.gov.br/ccivil_03/leis/l9985.htm Google Scholar
Brasil (2006) Lei n° 11.428, de 22 de dezembro de 2006 [www document]. URL http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/lei/l11428.htm Google Scholar
Brooks, TM, Mittermeier, RA, Mittermeier, CG, da Fonseca, GAB, Rylands, AB, Konstant, WR et al. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology 16: 909923.CrossRefGoogle Scholar
Carroll, C, McRae, BH, Brookes, A (2011) Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conservation Biology 26: 7887.CrossRefGoogle ScholarPubMed
Castilho, CS, Hackbart, VCS, Pivello, VR, Santos, RF (2015) Evaluating landscape connectivity for Puma concolor and Panthera onca among Atlantic Forest protected areas. Environmental Management 55: 13771389.CrossRefGoogle ScholarPubMed
Chantrey, J, Dale, TD, Read, JM, White, S, Whitfield, F, Jones, D et al. (2014) European red squirrel population dynamics driven by squirrelpox at a gray squirrel invasion interface. Ecology and Evolution 4: 37883799.CrossRefGoogle Scholar
Crooks, KR, Sanjayan, M (2006) Connectivity conservation: maintaining connections for nature. In: KR, Crooks (ed.), Connectivity Conservation (pp. 19). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
De Angelo, C, Paviolo, A, Wiegand, T, Kanagaraj, R, Di Bitetti, MS (2013). Understanding species persistence for defining conservation actions: a management landscape for jaguars in the Atlantic Forest. Biological Conservation 159: 422433.CrossRefGoogle Scholar
de la Sancha, NU, Boyle, SA, McIntyre, NE (2021) Identifying structural connectivity priorities in eastern Paraguay’s fragmented Atlantic Forest. Scientific Reports 11: 16129.CrossRefGoogle ScholarPubMed
Dean, W (1996) A ferro e fogo: a história e a devastação da Mata Atlântica brasileira. AMR Sá (ed.) (pp. 558559). São Paulo, Brazil: Companhia das Letras.Google Scholar
Deberdt, AJ, Scherer, SB (2007) O javali asselvajado: ocorrência e manejo da espécie no Brasil. Natureza & Conservação 5: 2330.Google Scholar
Di Minin, E, Hunter, LTB, Balme, GA, Smith, RJ, Goodman, PS, Slotow, R (2013) Creating larger and better connected protected areas enhances the persistence of big game species in the Maputaland–Pondoland–Albany biodiversity hotspot. PLoS ONE 8: e71788.CrossRefGoogle ScholarPubMed
Diniz, UM, Fischer, N, Aguiar, L (2022) Changing the main course: strong bat visitation to the ornithophilous mistletoe Psittacanthus robustus (Loranthaceae) in a Neotropical savanna. Biotropica 54: 478489.CrossRefGoogle Scholar
Embrapa (1979) Manual de métodos de análise do solo . In: Serviço Nacional de Levantamento e Conservação de Solos. Rio de Janeiro, Brazil: Empresa Brasileira de Pesquisa e Agropecuária.Google Scholar
FAO (2021) Land-use planning [www document]. URL https://www.fao.org/3/cb5036en/cb5036en.pdf Google Scholar
Fonseca, CR, Venticinque, EM (2018) Biodiversity conservation gaps in Brazil: a role for systematic conservation planning. Perspectives in Ecology and Conservation 16: 6167.CrossRefGoogle Scholar
Fundação SOS Mata Atlântica, INPE (2021) Atlas dos remanescentes florestais da Mata Atlântica. São Paulo, Brazil: Fundação SOS Mata Atlântica.Google Scholar
Glen, AS, Pech, RP, Byrom, AE (2013) Connectivity and invasive species management: towards an integrated landscape approach. Biological Invasions 15: 21272138.CrossRefGoogle Scholar
Global Invasive Species Database (2022) 100 of the World’s Worst Invasive Alien Species [www document]. URL www.iucngisd.org Google Scholar
Governo do Estado de São Paulo (2020) Inventário Florestal do Estado de São Paulo. In: MA, Nalon (ed.), Mapeamento da Cobertura Vegetal Nativa (p. 60). São Paulo, Brazil: Instituto Florestal.Google Scholar
Haddad, NM, Brudvig, LA, Colbert, J, Davies, KF, Gonzalez, A, Holt, RD et al. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1: e1500052.CrossRefGoogle ScholarPubMed
Hansen, AJ, Rotella, JJ (2002) Biophysical factors, land use, and species viability in and around nature reserves. Conservation Biology 16: 11121122.CrossRefGoogle Scholar
IBGE (2017) População [www document]. URL www.cidades.ibge.gov.br Google Scholar
IUCN (2017) International Union for Conservation of Nature’s Red List [www document]. URL www.iucnredlist.org Google Scholar
Jordano, P, Bascompte, J, Olesen, JM (2006) The ecological consequences of complex topology and nested structure in pollination webs. In: NM, Waser (ed.), Specialization and Generalization in Plant–Pollinator Interactions (pp. 173199). Chicago, IL, USA: University of Chicago Press.Google Scholar
Laurance, WF (2009) Conserving the hottest of the hotspots. Biological Conservation 142: 1137.CrossRefGoogle Scholar
Lemos, RC, Bennema, J, Santos, RD, Iturri, JO, Inclan, RS, Panoso, LA et al. (1960) Levantamento de reconhecimento dos solos do Estado de São Paulo (contribuição à Carta de Solos do Brasil). In: RC, Lemos (ed.), Boletim do Serviço Nacional de Pesquisas Agronômicas (p. 634). Rio de Janeiro, Brazil: Serviço Nacional de Pesquisas Agronômicas.Google Scholar
Lundberg, J, Moberg, F (2003) Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6: 8798.CrossRefGoogle Scholar
MapBiomas (2021) MapBiomas lança coleção de mapas anuais de toda a Mata Atlântica, abrangendo Brasil, Argentina e Paraguai [www document]. URL www.mapbiomas.org Google Scholar
Margules, CR, Pressey, RL (2000) Systematic conservation planning. Nature 405: 243253.CrossRefGoogle ScholarPubMed
McRae, BH (2006) Isolation by resistance. Evolution 60: 15511561.Google ScholarPubMed
McRae, BH, Dickson, BG, Keitt, TH, Shah, VB (2008) Using circuit theory to model connectivity in ecology, evolution and conservation. Ecological Society of America 89: 27122724.Google ScholarPubMed
MMA (2022) Mata Atlântica [www document]. URL www.antigo.mma.gov.br Google Scholar
Moraes, MCP, Mello, K, Toppa, RH (2017) Protected areas and agricultural expansion: biodiversity conservation versus economic growth in the southeast of Brazil. Environmental Management 188: 7384.Google ScholarPubMed
Morrison, JC, Sechrest, W, Dinerstein, E, Wilcove, DS, Lamoreux, JF (2007) Persistence of large mammal faunas as indicators of global human impacts. Journal of Mammalogy 88: 13631380.CrossRefGoogle Scholar
Myers, N, Mittermeier, RA, Mittermeier, CG, Fonseca, GAB, Kent, J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.CrossRefGoogle ScholarPubMed
Numata, I, Silva, SS, Cochrane, MA, d’Oliveira, MV (2017) Fire and edge effects in a fragmented tropical forest landscape in the southwestern Amazon. Forest Ecology and Management 401: 135146.CrossRefGoogle Scholar
Paula, LFA, Negreiros, D, Azevedo, LO, Fernandes, RL, Stehmann, JR, Silveira, FAO (2015) Functional ecology as a missing link for conservation of a resource-limited flora in the Atlantic Forest. Biodiversity Conservation 24: 22392253.CrossRefGoogle Scholar
Paula, RC, Desbiez, A, Beisiegel, BM, Campos, CB, Sana, DA, Moraes, EA Jr et al. (2013) Plano de Ação Nacional para a Conservação da Onça-Pintada. Série Espécies Ameaçadas 19: 1384.Google Scholar
Paviolo, A, De Angelo, C, Ferraz, KMPMB, Morato, R, Pardo, JM, Srbek-Araujo, AC et al (2016) A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Scientific Reports 6: 37147.CrossRefGoogle ScholarPubMed
Pedrosa, F, Salerno, R, Padilha, FVB, Galetti, M (2015) Current distribution of invasive feral pigs in Brazil: economic impacts and ecological uncertainty. Natureza & Conservação 13: 8487.CrossRefGoogle Scholar
Pimm, SL, Jones, HL, Diamond, J (1988) On the risk of extinction. American Naturalist 132: 757785.CrossRefGoogle Scholar
RBMA (2022) Estabelecendo os objetivos de conservação da Biodiversidade [www document]. URL http://www.rbma.org.br/anuario/mata_06_fap_sumario_pag02.asp Google Scholar
Ribeiro, DB, Batista, R, Prado, PI (2011) The importance of small scales to the fruit-feeding butterfly assemblages in a fragmented landscape. Biodiversity and Conservation 21: 811827.CrossRefGoogle Scholar
Ribeiro, MC, Metzger, JP, Martensen, AC, Ponzoni, FJ, Hirota, MM (2009). The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142: 11411153.CrossRefGoogle Scholar
Rocha, MA, Massi, KG, Mendes, TSG (2020) Integridade Ecológica de propriedades agrícolas de produtores orgânicos na região do Vale do Paraíba Paulista. Paisagem e Ambiente 31: 113.CrossRefGoogle Scholar
Sanderson, EW, Redford, KH, Vedder, A, Coppolillo, PB, Ward, SE (2002) A conceptual model for conservation planning based on landscape species requirements. Landscape and Urban Planning 58: 4156.CrossRefGoogle Scholar
Santos, J, Herrmann, B, Mieske, B, Krag, LA, Haase, S, Stepputtis, D (2018) The efficiency of sieve-panels for bycatch separation in Nephrops trawls. Fisheries Management and Ecology 25: 464473.CrossRefGoogle Scholar
Paulo, São (2021) Relatório de Atividades do Projeto Conexão Mata Atlântica [www document]. URL https://smastr16.blob.core.windows.net/conexaomataatlantica/sites/190/2021/05/relatatividades2021-8.pdf Google Scholar
Sapucci, GR, Negri, RG, Casaca, W, Massi, KG (2021) Analyzing spatio-temporal land cover dynamics in an Atlantic Forest portion using unsupervised change detection techniques. Environmental Modeling & Assessment 26: 581590.CrossRefGoogle Scholar
Saunders, DA, Hobbs, RJ, Margules, CR (1991) Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5: 1832.CrossRefGoogle Scholar
Shirabe, T (2015) A method for finding a least-cost wide path in raster space. International Journal of Geographical Information Science 30: 14691485.CrossRefGoogle Scholar
Silva, CA, Nanni, MR, Teodoro, PE, Silva, GFC (2017) Vegetation indices for discrimination of soybean areas: a new approach. Agronomy, Soils & Environmental Quality 109: 13311343.Google Scholar
Silva, FT, Prates, APL (2020) Possibilidade de Uso de Mecanismos de Compensação para a Regularização Fundiária de Unidades de Conservação Estaduais em Minas Gerais. Biodiversidade Brasileira 10: 1735.CrossRefGoogle Scholar
Sollmann, R, Tôrres, NM, Silveira, L (2008) Jaguar conservation in Brazil: the role of protected areas. CAT News 4: 1520.Google Scholar
Souza, CM Jr, Shimbo, JZ, Rosa, M, Parente, L, Alencar, AA, Rudorff, BFT et al. (2020) Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat Archive and Earth Engine. Remote Sensing 12: 127.CrossRefGoogle Scholar
Starzynski, R, Simões, SJC, Soares, PV, Mendel, TS (2018) Demographic pressure in Serra do Mar State Park and its buffer zone, southeastern Brazil. Environmental Monitoring and Assessment 190: 511.CrossRefGoogle Scholar
Terra, TN, Santos, RF (2012) Measuring cumulative effects in a fragmented landscape. Ecological Modelling 228: 8995.CrossRefGoogle Scholar
Thompson, JJ, Morato, RG, Niebuhr, BB, Alegre, VB, Oshima, JEF, de Barros, AE et al. (2021) Environmental and anthropogenic factors synergistically affect space use of jaguars. Current Biology 31: 34573466.CrossRefGoogle ScholarPubMed
Wilson, DE, Reeder, DM (2005) Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore, MD, USA: Johns Hopkins University Press.Google Scholar
Woodroffe, R, Ginsberg, JR (1998) Edge effects and the extinction of populations inside protected areas. Science 280: 21262128.CrossRefGoogle ScholarPubMed
Zanin, M, Machado, N (2014) Susceptibilidade à extinção dos felinos selvagens. In: AC, Barros (ed.), VII Congresso Brasileiro de Mastozoologia (pp. 7172). Gramado, Brazil: Congresso Brasileiro de Mastozoologia.Google Scholar