Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T19:04:57.451Z Has data issue: false hasContentIssue false

An Agenda for Conservation Research and Its Application, with A Case-study from Amazonian Ecuador

Published online by Cambridge University Press:  24 August 2009

Peter B. Pearman
Affiliation:
Center for Conservation Biology, Department of Biological Sciences, Stanford University, Stanford, California 94305–5020, USA, and Fundación Jatun Sacha, Edificio del Herbario Nacional, Avenida Rio Coca 1734 e Isla Fernandina, Casilla 17–12–867, Quito, Ecuador.

Extract

The watershed of the Upper Napo River (UNR), in the western portion of Napo Province in Amazonian Ecuador, holds one of the most species-rich tropical forests known on Earth. It is an area in which agricultural development and associated forest destruction are at loggerheads with conservation of biodiversity. This essay briefly describes the major factors that influence and threaten biodiversity in the UNR watershed.

Type
Main Papers
Copyright
Copyright © Foundation for Environmental Conservation 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References*

Bibby, C.J., Collar, N.J., Crosby, M.J., Heath, M.F., Imboden, C., Johnson, T.H., Long, A.J., Sattersfield, A.J. & Thurgood, S.J. (1992). Putting Biodiversity on the Map: Priority Areas for Global Conservation. International Council for Bird Preservation, Cambridge, England, UK: vi + 90 pp., illustr.Google Scholar
Blackburn, T.M., Harvey, P.H. & Pagel, M.D. (1990). Species number, population density, and body-size relationships in natural communities. Journal of Animal Ecology, 59, pp. 335–46.CrossRefGoogle Scholar
Braak, C.J.F. ter (1987). The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio, 69, pp. 6977.CrossRefGoogle Scholar
Duellman, W.E. (1982). Quaternary climatic-ecological fluctuations in the lowland tropics: frogs and forests. Pp. 389402 in Biological Diversification in the Tropics (Ed. Prance, G.T.). Columbia University Press, New York, NY, USA: xvi + 714 pp., illustr.Google Scholar
Eberhardt, L.L. (1990). Testing hypotheses about populations. Journal of Wildlife Management, 52, pp. 50–6.CrossRefGoogle Scholar
Goodland, R.J.A. (1987). The World Bank's wildlands policy: a major new means of financing conservation. Conservation Biology, 1, pp. 210–3.CrossRefGoogle Scholar
Haffer, J. (1969). Speciation in Amazonian forest birds. Science, 165, pp. 131–7.CrossRefGoogle ScholarPubMed
Hanrahan, M.S. & Pereira, J. (1990). Manjo de La Zone del Gran Sumaco Provincia del Napo, Ecuador. Unpublished DESFIL. Report to US AID Mission, Quito, Ecuador: xvii + 104 pp., illustr.Google Scholar
Heyer, R.W. & Maxson, L.R. (1982). Distributions, relationships, and zoogeography of lowland frogs: the Leptodactylus complex in South America, with special reference to Amazonia. Pp. 375–88 in Biological Diversification In The Tropics (Ed. Prance, G.). Columbia University Press, New York, NY, USA: xvi + 714 pp., illustr.Google Scholar
Holdridge, L.R. (1967). Life Zone Ecology. Tropical Science Center, San José, Costa Rica: 206 pp., illustr.Google Scholar
Holling, C.S. (Ed.) (1978). Adaptive Environmental Assessment and Management. John Wiley, New York, NY, USA: xviii + 377 pp., illustr.Google Scholar
Hubbell, S.P. & Foster, R.B. (1986). Commonness and rarity in a neotropical forest: implications for tropical tree conservation. Pp. 205–31 in Conservation Biology: The Science of Scarcity and Diversity (Ed. Soule, M.). Sinauer, Sunderland, Massachusetts, USA: xii + 584 pp., illustr.Google Scholar
Hutto, R.L., Reel, S. & Landres, P.B. (1994). A critical evaluation of the species approach to biological conservation. Zoo, 295, pp. 119.Google Scholar
Kremen, C., Colwell, R.K., Erwin, T.L., Murphy, D.D., Noss, R.F. & Sanjayan, M.A. (1993). Terrestrial arthropod assemblages: their use in conservation planning. Conservation Biology, 7, pp. 796808.CrossRefGoogle Scholar
Kremen, C., Merenlender, A.M. & Murphy, D.D. (1994). Ecological monitoring: a vital need for integrated conservation and development programs in the tropics. Conservation Biology, 8, pp. 110.CrossRefGoogle Scholar
Landres, P.B., Verner, J. & Thomas, J.W. (1988). Ecological uses of vertebrate indicator species: a critique. Conservation Biology, 2, pp. 316–29.CrossRefGoogle Scholar
MacNab, J. (1983). Wildlife management as scientific experimentation. Wildlife Society Bulletin, 11, pp. 397401.Google Scholar
Myers, N. (1986). Tropical deforestation and a mega-extinction spasm. Pp. 394409 in Conservation Biology: The Science Scarcity and Diversity (Ed. Soulé, M.). Sinauer, Sunderland, Massachusetts, USA: xii + 584 pp., illustr.Google Scholar
Neill, D.A. (1993). Development of training programs for conservation research and natural resource management in Ecuador. Pp. 187–97 in Perspectives on Biodiversity: Case Studies of Genetic Resource Conservation and Development (Eds Potter, C., Cohen, J.I. & Janczewski, D.). American Association for the Advancement of Science Press, Washington, DC, USA: 245 pp., illustr.Google Scholar
Neill, D.A. (in press). Gran Sumaco and Upper Napo River Region, Ecuador. In Centres of Plant Diversity, Vol. 3, America (Eds V.H. Heywood & O. Herrera-Macbryde). IUCN Plant Conservation Office, Kew, England, UK.Google Scholar
Neill, D.A., Ceron, C.E. & Palacios, W.A. (in press). Flora de la Estación Biológica Jatun Sacha: Lista preliminar. Revista del Museo Ecuatoriano de Ciencias Naturales.Google Scholar
Palmer, M.W. (1993). Putting things in even better order: the advantages of canonical correspondence analysis. Ecology, 74, pp. 215–30.CrossRefGoogle Scholar
Pearman, P.B. (in prep.). [Untitled — see text for topic.]Google Scholar
Pearson, D.L. (1982). Historical factors and bird species richness. Pp. 441–52 in Biological Diversification in the Tropics (Ed. Prance, G.T.). Columbia University Press, New York, NY, USA: xvi + 714 pp., illustr.Google Scholar
Pendergast, J.R., Quinn, R.M., Lawton, J.H., Eversham, B.C., Gibbons, D.W. (1993). Rare species, the coincidence of diversity hotspots and conservation strategies. Nature (London), 365, pp. 335–7.CrossRefGoogle Scholar
Peters, R.H. (1991). A Critique for Ecology. Cambridge University Press, Cambridge, England, UK: xiv + 366 pp., illustr.Google Scholar
Prance, G.T. (1973). Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon basin, based on evidence from distribution patterns in Caryocaraceae, Chrysobalanaceae, Dichapetalaceae, and Lecythidaceae. Acta Amazonica, 3, pp. 528.CrossRefGoogle Scholar
Prance, G.T. (1982). Forest refuges: evidence from woody angiosperms. Pp. 137–57 in Biological Diversification in Tropics (Ed. Prance, G.T.). Columbia University Press, New York, NY, USA: xvi + 714 pp., illustr.Google Scholar
Romesburg, H.C. (1981). Wildlife science: gaining reliable knowledge. Journal of Wildlife Management, 45, pp. 293313.CrossRefGoogle Scholar
Rudel, T.K. & Horowitz, B. (1993). Tropical Deforestation: Small Farmers and Landclearing in the Ecuadorian Amazon. Columbia University Press, New York, NY, USA: xv + 234 pp., illustr.Google Scholar
Shaffer, M.L. & Saterson, K.A. (1987). The biological diversity program of the U.S. Agency for International Development. Conservation Biology, 1, pp. 280–6.CrossRefGoogle Scholar
Southgate, D. & Clark, H.L. (1993). Can conservation projects save biodiversity in South America. Ambio, 22, pp. 163–6.Google Scholar
ter Braak, C.J.F.See Braak, C.J.F. ter.Google Scholar
Vuilleumier, B.S. (1971). Pleistocene changes in the fauna and flora of South America. Science, 173, pp. 771–80.CrossRefGoogle ScholarPubMed
Walters, C.J. (1986). Adaptive Management of Renewable Resources. Macmillan, New York, NY, USA: x + 374 pp., illustr.Google Scholar
Walters, C.J. & Hilborn, R. (1978). Ecological optimization and adaptive management. Annual Review of Ecology and Systematics, 9, pp. 157–88.CrossRefGoogle Scholar