Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T13:29:32.675Z Has data issue: false hasContentIssue false

Urbanization impacts water quality and the use of microhabitats by fish in subtropical agricultural streams

Published online by Cambridge University Press:  18 May 2022

Margenny Barrios*
Affiliation:
Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Av. Tacuarembó s/n, entre Av. Artigas y Aparicio Saravia, Maldonado CP 20000, Uruguay
Franco Teixeira de Mello
Affiliation:
Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Av. Tacuarembó s/n, entre Av. Artigas y Aparicio Saravia, Maldonado CP 20000, Uruguay
*
Author for correspondence: Margenny Barrios, Email: [email protected]

Summary

Land-use changes have negative effects on stream conditions and fish assemblages, but their effects on water quality and the use of microhabitats by fish in subtropical lowland streams are unclear. We evaluated the effects of urban patches (two urban streams) in an agricultural matrix (two ‘agricultural’ streams) on water quality, microhabitat diversity and fish assemblages, as well as the selection of microhabitat types by fish in the Arroyo Colorado basin (Uruguay). Physicochemical water parameters were measured, the fish sampled using electrofishing, microhabitat diversity, occupancy of microhabitats by fish and the most important microhabitat types for fish species were analysed. Agricultural streams presented higher water quality and microhabitat diversity, and most of the microhabitats were occupied by fish. Microhabitats with medium substrate sizes and running water prevailed in urban streams, while the presence of macrophytes, shallow waters and different substrate sizes were common in agricultural streams. The most important microhabitats used by fish species were not the most abundant, highlighting the fragility of streams resulting from the loss of appropriate conditions. Understanding how different degrees of deterioration in streams affect water quality and microhabitat–fish interactions is essential for the designing of effective monitoring and restoration programmes.

Type
Research Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcántara, I, Somma, A, Chalar, G, Fabre, A, Segura, A, Achkar, M et al. (2022) A reply to ‘Relevant factors in the eutrophication of the Uruguay River and the Río Negro’. Science of the Total Environment 818: 151854.CrossRefGoogle Scholar
Alvareda, E, Lucas, C, Paradiso, M, Piperno, A, Gamazo, P, Erasun, V et al. (2020) Water quality evaluation of two urban streams in northwest Uruguay: are national regulations for urban stream quality sufficient? Environmental Monitoring and Assessment 192: 122.Google ScholarPubMed
APHA (1998) Inorganic non-metallic constituents. In: Standard Methods for the Examination of Water and Wastewater, 20th edition (pp. 123125). Washington, DC, USA: American Public Health Association.Google Scholar
Barbosa, AS, Pires, MM, Schulz, UH (2020) Influence of land-use classes on the functional structure of fish communities in southern Brazilian headwater streams. Environmental Management 65: 618629.CrossRefGoogle ScholarPubMed
Bascompte, J, Jordano, P, Olesen, JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312: 431433.CrossRefGoogle ScholarPubMed
Benejam, L, Teixeira-de Mello, F, Meerhoff, M, Loureiro, M, Jeppesen, E, Brucet, S (2016) Assessing effects of change in land use on size-related variables of fish in subtropical streams. Canadian Journal of Fisheries and Aquatic Sciences 73: 547556.CrossRefGoogle Scholar
Bistoni, MA, Hued, A, Videla, M, Sagretti, L (1999) Efectos de la calidad del agua sobre las comunidades ícticas de la región central de Argentina. Revista Chilena de Historia Natural 72: 325335.Google Scholar
Borcard, D, Gillet, F, Legendre, P (2018) Numerical Ecology with R. Cham, Switzerland: Springer.CrossRefGoogle Scholar
Chalar, G, Delbene, L, González-Bergonzoni, I, Arocena, R (2013) Fish assemblage changes along a trophic gradient induced by agricultural activities (Santa Lucía, Uruguay). Ecological Indicators 24: 582588.CrossRefGoogle Scholar
Cortelezzi, A, Sierra, MV, Gómez, N, Marinelli, C, Capítulo, AR (2013) Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina). Environmental Monitoring and Assessment 185: 58015815.CrossRefGoogle Scholar
Dala-Corte, RB, Giam, X, Olden, JD, Becker, FG, Guimarães, TDF, Melo, AS (2016) Revealing the pathways by which agricultural land-use affects stream fish communities in south Brazilian grasslands. Freshwater Biology 61: 19211934.CrossRefGoogle Scholar
Dala-Corte, RB, Sgarbi, LF, Becker, FG, Melo, AS (2019) Beta diversity of stream fish communities along anthropogenic environmental gradients at multiple spatial scales. Environmental Monitoring and Assessment 191: 117.CrossRefGoogle ScholarPubMed
Desmet, NJS, Van Belleghem, S, Seuntjens, P, Bouma, TJ, Buis, K, Meire, P (2011) Quantification of the impact of macrophytes on oxygen dynamics and nitrogen retention in a vegetated lowland river. Physics and Chemistry of the Earth, Parts A/B/C 36: 479489.CrossRefGoogle Scholar
Di Prinzio, CY, Casaux, RJ, Miserendino, ML (2009) Effects of land use on fish assemblages in Patagonian low order streams. Annales de Limnologie – International Journal of Limnology 45: 267277.CrossRefGoogle Scholar
DIEA (2019) Anuario Estadístico Agropecuario 2019. Buenos Aires, Argentina: Oficina de Estadísticas, Agropecuarias Ministerio de Agricultura, Ganadería y Pesca.Google Scholar
Dormann, CF, Gruber, B, Fründ, J (2008) Introducing the bipartite package: analysing ecological networks. Interaction 8: 811.Google Scholar
Ernst, F, Alonso, B, Colazzo, M, Pareja, L, Cesio, V, Pereira, A et al. (2018) Occurrence of pesticide residues in fish from south American rainfed agroecosystems. Science of the Total Environment 631: 169179.CrossRefGoogle ScholarPubMed
Erős, T, Campbell Grant, EH (2015) Unifying research on the fragmentation of terrestrial and aquatic habitats: patches, connectivity and the matrix in riverscapes. Freshwater Biology 60: 14871501.CrossRefGoogle Scholar
Erős, T, Czeglédi, I, Tóth, R, Schmera, D (2020) Multiple stressor effects on alpha, beta and zeta diversity of riverine fish. Science of the Total Environment 748: 141407.CrossRefGoogle ScholarPubMed
Frissell, CA, Liss, WJ, Warren, CE, Hurley, MD (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199214.CrossRefGoogle Scholar
Giorgi, A, Feijoó, C, Tell, G (2005) Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity and Conservation 14: 16991718.CrossRefGoogle Scholar
Goyenola, G, Meerhoff, M, Teixeira-de Mello, F, González-Bergonzoni, I, Graeber, D, Fosalba, C et al. (2015) Monitoring strategies of stream phosphorus under contrasting climate-driven flow regimes. Hydrology and Earth System Sciences 19: 40994111.CrossRefGoogle Scholar
Griffero, L, Alcántara-Durán, J, Alonso, C, Rodríguez-Gallego, L, Moreno-González, D, García-Reyes, JF et al. (2019) Basin-scale monitoring and risk assessment of emerging contaminants in South American Atlantic coastal lagoons. Science of the Total Environment 697: 134058.CrossRefGoogle ScholarPubMed
Hued, AC, Bistoni, MA (2005) Development and validation of a Biotic Index for evaluation of environmental quality in the central region of Argentina. Hydrobiologia 543: 279298.CrossRefGoogle Scholar
Informe Anual Estratégico (2017) Sistemas acuáticos canarios. Canelones, Uruguay: Estado del conocimiento y gestión ambiental. Dirección general de Gestión Ambiental. Intendencia departamental de Canelones. CURE/Universidad de la República.Google Scholar
Kassambara, A, Mundt, F (2017) Factoextra: extract and visualize the results of multivariate data analyses. R Package Version 1.07 [www document] URL https://CRAN.R-project.org/package=factoextra Google Scholar
Kottek, M, Grieser, J, Beck, C, Rudolf, B, Rubel, F (2006) World map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift 15: 259263.CrossRefGoogle Scholar
, S, Josse, J, Husson, F (2008) FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25: 118.CrossRefGoogle Scholar
Marini, L, Bartomeus, I, Rader, R, Lami, F (2019) Species–habitat networks: a tool to improve landscape management for conservation. Journal of Applied Ecology 56(4): 923928.CrossRefGoogle Scholar
Manzotti, AR, Ceneviva-Bastos, M, Teresa, FB, Casatti, L (2020) Short-term response of fish assemblages to instream habitat restoration in heavily impacted streams. Neotropical Ichthyology 18: e190052.CrossRefGoogle Scholar
Moi, DA, Teixeira de Mello, F (2022) Urbanization decreased the multitrophic fish richness and ecosystem functioning in neotropical streams. Research Square Preprint [www document]. URL https://doi.org/10.21203/rs.3.rs-170359/v1 CrossRefGoogle Scholar
Montag, LF, Winemiller, KO, Keppeler, FW, Leão, H, Benone, NL, Torres, NR et al. (2019) Land cover, riparian zones and instream habitat influence stream fish assemblages in the eastern Amazon. Ecology of Freshwater Fish 28: 317329.CrossRefGoogle Scholar
Müller, R, Wiedemann, O (1955) Die bestimmung des nitrat-ions in Wasser. Von Wasser 22: 247271.Google Scholar
O’Hare, MT, Baattrup-Pedersen, A, Baumgarte, I, Freeman, A, Gunn, ID, Lázár, AN et al. (2018) Responses of aquatic plants to eutrophication in rivers: a revised conceptual model. Frontiers in Plant Science 9: 451.CrossRefGoogle ScholarPubMed
Oksanen, J, Kindt, R, Legendre, P, O’Hara, B, Stevens, MHH, Oksanen, MJ et al. (2007) The vegan package. Community Ecology Package 10: 719.Google Scholar
Ostrand, KG, Wilde, GR (2002) Seasonal and spatial variation in a prairie stream–fish assemblage. Ecology of Freshwater Fish 11: 137149.CrossRefGoogle Scholar
Paredes del Puerto, JM, Paracampo, AH, García, ID, Maiztegui, T, Garcia de Souza, JR., Maroñas, ME, Colautti, DC (2021) Fish assemblages and water quality in Pampean streams (Argentina) along an urbanization gradient. Hydrobiologia 848: 44934510.CrossRefGoogle Scholar
Paul, MJ, Meyer, JL (2001) Streams in the urban landscape. Annual Review of Ecology and Systematics 32: 333365.CrossRefGoogle Scholar
Pinheiro, J, Bates, D, DebRoy, S, Sarkar, D, Heisterkamp, S, Van Willigen, B, Maintainer, R (2017) Package ‘nlme’. Linear and nonlinear mixed-effects models, version 3(1) [www document]. URL https://svn.r-project.org/R-packages/trunk/nlme/ Google Scholar
Pringle, CM, Naiman, RJ, Bretschko, G, Karr, JR, Oswood, MW, Webster, JR et al. (1988) Patch dynamics in lotic systems: the stream as a mosaic. Journal of the North American Benthological Society 7: 503524.CrossRefGoogle Scholar
Quirino, BA, Lansac-Tôha, FM, Thomaz, SM, Heino, J, Fugi, R (2021) Macrophyte stand complexity explains the functional α and β diversity of fish in a tropical river-floodplain. Aquatic Sciences 83: 114.CrossRefGoogle Scholar
R Core Team (2019) R Version 3.6.0: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Rahel, FJ (2010) Homogenization, differentiation, and the widespread alteration of fish faunas. In: Gido, KB, Jackson, DA (eds.), Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques. American Fisheries Society, Symposium 73 (pp. 311326). Bethesda, MD, USA: American Fisheries Society.Google Scholar
Ramos-Fregonezi, A, Malabarba, LR, Fagundes, NJ (2017) Population genetic structure of Cnesterodon decemmaculatus (Poeciliidae): a freshwater looks at the Pampa biome in Southern South America. Frontiers in Genetics 8: 214.CrossRefGoogle Scholar
Romero, RM, Casatti, L (2012) Identification of key microhabitats for fish assemblages in tropical Brazilian savanna streams. International Review of Hydrobiology 97: 526541.CrossRefGoogle Scholar
Roxo, FF, Lujan, NK, Tagliacollo, VA, Waltz, BT, Silva, GS, Oliveira, C, Albert, JS (2017) Shift from slow to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: Hypoptopomatinae). PLoS ONE 12: e0178240. CrossRefGoogle Scholar
Sand-Jensen, KAJ (1998) Influence of submerged macrophytes on sediment composition and near-bed flow in lowland streams. Freshwater Biology 39: 663679.CrossRefGoogle Scholar
Soutullo, A, Ríos, M, Zaldúa, N, Teixeira-de-Mello, F (2020) Soybean expansion and the challenge of the coexistence of agribusiness with local production and conservation initiatives: pesticides in a Ramsar site in Uruguay. Environmental Conservation 47: 97103.CrossRefGoogle Scholar
Srivastava, J, Gupta, A, Chandra, H (2008) Managing water quality with aquatic macrophytes. Reviews in Environmental Science and Bio/Technology 7: 255266.CrossRefGoogle Scholar
Sueyoshi, M, Ishiyama, N, Nakamura, F (2016). β-diversity decline of aquatic insects at the microhabitat scale associated with agricultural land use. Landscape and Ecological Engineering 12: 187196.CrossRefGoogle Scholar
Teixeira-de Mello, F, Kristensen, EA, Meerhoff, M, González-Bergonzoni, I, Battrup-Pedersen, A, Iglesias, C et al. (2014) Monitoring fish communities in wadeable lowland streams: comparing the efficiency of electrofishing methods at contrasting fish assemblages. Environmental Monitoring and Assessment 186: 16651677.CrossRefGoogle ScholarPubMed
Teixeira-de Mello, F, Meerhoff, M, Baattrup-Pedersen, A, Maigaard, T, Kristensen, PB, Andersen, TK, et al. (2012) Community structure of fish in lowland streams differ substantially between subtropical and temperate climates. Hydrobiologia 684: 143160.CrossRefGoogle Scholar
Teixeira-de Mello, F, Meerhoff, M, González-Bergonzoni, I, Kristensen, EA, Baattrup-Pedersen, A, Jeppesen, E (2015) Influence of riparian forests on fish assemblages in temperate lowland streams. Environmental Biology of Fishes 99: 133144.CrossRefGoogle Scholar
Thorp, JH, Thoms, MC, Delong, MD (2008) The Riverine Ecosystem Synthesis: Toward Conceptual Cohesiveness in River Science. Oxford, UK: Elsevier.CrossRefGoogle Scholar
Valderrama, JC (1981) The simultaneous analysis of total N and total P in natural waters. Marine Chemistry 10: 109122.CrossRefGoogle Scholar
Walsh, CJ, Roy, AH, Feminella, JW, Cottingham, PD, Groffman, PM (2005) The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society 24: 706723.CrossRefGoogle Scholar
Xavier, LRCC, Scherner, F, Burgos, DC, Barreto, RC, Pereira, SMB (2016). Urbanization effects on the composition and structure of macrophytes communities in a lotic ecosystem of Pernambuco State, Brazil. Brazilian Journal of Biology 76: 888897.CrossRefGoogle Scholar
Yofukuji, KY, Cardozo, ALP, Quirino, BA, Aleixo, MHF, Fugi, R (2021) Macrophyte diversity alters invertebrate community and fish diet. Hydrobiologia 848: 913927.CrossRefGoogle Scholar
Zaruki, M, González-Bergonzoni, I, Teixeira de Mello, F, Loureiro, M (2011) Fish diversity loss in an urban stream of Uruguay throughout the last century. Pan-American Journal of Aquatic Sciences 6: 7175.Google Scholar
Supplementary material: File

Barrios and Teixeira de Mello supplementary material

Barrios and Teixeira de Mello supplementary material

Download Barrios and Teixeira de Mello supplementary material(File)
File 3.7 MB