Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T04:36:09.807Z Has data issue: false hasContentIssue false

A potential geoconservation map of the Las Lagunas area, northern Peru

Published online by Cambridge University Press:  21 July 2010

A. C. SEIJMONSBERGEN*
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands
J. SEVINK
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands
L. H. CAMMERAAT
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands
J. RECHARTE
Affiliation:
The Mountain Institute (Instituto de Montaña), Av. República de Panamá, 6539 Surco, Lima 33, Perú
*
*Correspondence: Dr A. C. Seijmonsbergen Tel: +31 20 5258137 Fax: +31 20 5257832 e-mail: [email protected]

Summary

The Andean páramo ecosystems host geodiversity of global importance, but also have important societal functions, including agricultural production and delivery of water to people and industry. Páramo geo-ecosystems are highly susceptible to environmental degradation because of their alpine relief, extreme climate and fragile soils. In contrast to other parts of the world, geodiversity assessment studies in the Andes are scarce. A geodiversity assessment method was adapted and used to produce a potential geoconservation map of the Andean páramo. The Las Lagunas area (Cajamarca, Northern Peru) has a rich archive of climate proxy data and landscape reconstruction, and plays a key role in the functioning of regional geo-ecosystems. Undisturbed proxies for climate change are contained in four Late-Glacial recessional complexes of its former local ice cap and in pollen records preserved in the post-glacial peat cover. These new findings were used to develop a refined chronostratigraphy of the Late-Glacial warming period in the Andes of Northern Peru. Geo-ecosystem functions (for example water and carbon storage) depend on the environmental vulnerability and disturbance of the landforms and deposits. Therefore, potential geoconservation areas that combine a high scientific value and environmental vulnerability with a low disturbance and low frequency of occurrence should be prioritized for geoconservation. Such a strategy should also optimize sustainable use of resources and development of these areas. Mountainous countries like Peru require future management strategies that recognize and incorporate potential geoconservation information in regional planning, to prevent unnecessary loss of irreplaceable soils, climate proxies and geo-ecosystem functions upon future changes in land use and climate.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BRGM (2001) The GIS Andes mineral deposit database [www document]. URL http://gisandes.brgm.fr/index.htmGoogle Scholar
Burek, C.V. & Prosser, C.D. (2008). The history of geoconservation: an introduction. In: The History of Geoconservation, ed. Burek, C.V. & Prosser, C.D., pp. 15. London, UK: Geological Society London, Special Publication 300.Google Scholar
Bussink, C. & Hijmans, R. (2001) Land-use change in the Cajamarca catchment, Peru, 1975–1996. Scientist and Farmer: Partners in Research for the 21st Century. CIP Program Report 1999–2000, pp. 421428. Lima, Peru: International Potato Centre.Google Scholar
Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J. & Hofstede, R. (2006) Human impact on the hydrology of the Andean páramos. Earth-Science Reviews 79: 5372.CrossRefGoogle Scholar
Buytaert, W., Iñiguez, V. & De Bièvre, B. (2007) The effects of afforestation and cultivation on water yield in the Andean páramo. Forest Ecology and Management 251: 2230.CrossRefGoogle Scholar
Carey, M. (2005) Living and dying with glaciers: people's historical vulnerability to avalanches and outburst floods in Peru. Global and Planetary Change 47: 122134.CrossRefGoogle Scholar
Carrasca-Miranda, E.R. & Suarez-Ruiz, I. (2004) Short description of the Peruvian coal basins. International Journal of Coal Geology 58: 107117.CrossRefGoogle Scholar
Clapperton, C.M. (1972) The Pleistocene moraine stages of west central Peru. Journal of Glaciology 11: 255263.CrossRefGoogle Scholar
Coratza, P. & Giusti, C. (2005) Methodological proposal for the assessment of the scientific quality of geomorphosites. Il Quaternario 18: 305311.Google Scholar
Drăguţ, L. & Blaschke, T., (2006) Automated classification of landform elements using object-based image analysis. Geomorphology 81: 330344.CrossRefGoogle Scholar
Farber, D.L., Hancock, G.S., Finkel, R.C. & Rodbell, D.T. (2005) The age and extent of tropical alpine glaciation in the Cordillera Blanca, Peru. Journal of Quaternary Science 20: 759776.CrossRefGoogle Scholar
Gray, M. (2004) Geodiversity: Valuing and Conserving Abiotic Nature.Chichester, UK: John Wiley: 434 pp.Google Scholar
Gustavvson, M., Seijmonsbergen, A.C. & Kolstrup, E. (2008) Structure and contents of a new geomorphological GIS database linked to a geomorphological map. With an example from Liden, central Sweden. Geomorphology 95: 335349.CrossRefGoogle Scholar
Harden, C.P. (2006) Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 79: 249263.CrossRefGoogle Scholar
Hengl, T. & MacMillan, R.A. (2008) Geomorphometry. A key to landscape mapping and modelling. In: Geomorphometry: Concepts, Software, Applications. Developments in Soil Science, ed. Hengl, T. & Reuter, H.I., pp. 433460. Amsterdam, the Netherlands: Elsevier Science.Google Scholar
Hermoza, W., Brusset, S., Baby, P., Gil, W., Roddaz, M., Guerrero, N. & Bolãnos, M. (2005) The Huallaga foreland basin evolution: thrust propagation in a deltaic environment, northern Peruvian Andes. Journal of South American Earth Sciences 19: 2134.CrossRefGoogle Scholar
Kværner, J., Swensen, G. & Erikstad, L. (2006) Assessing environmental vulnerability in EIA. The content and context of the vulnerability concept in an alternative approach to standard EIA procedure. Environmental Impact Assessment Review 26: 511527.CrossRefGoogle Scholar
Lynch, T.F. (1986) Climate change and human settlement around the late-glacial Laguna de Punta Negra, Northern Chile: preliminary results. International Journal of Geoarchaeology 1: 145161.CrossRefGoogle Scholar
Mark, B. (2008) Tracing tropical Andean glaciers over space and time: some lessons and transdisciplinary implications. Global and Planetary Change 60: 101114.CrossRefGoogle Scholar
Mark, B.G. & Seltzer, G.O. (2005) Recent glacial recession in the Cordillera Blanca, Peru (AD 1962–1999). Quaternary Science Reviews 24: 22652280.CrossRefGoogle Scholar
Mark, B.G., Harrison, S.P., Spessa, A., New, M., Evans, D.J.A. & Helmens, K.F. (2005) Tropical snowline changes at the last glacial maximum: a global assessment. Quaternary International 138–139: 168201.CrossRefGoogle Scholar
Molina, E.G. & Little, A.V. (1981) Geoecology of the Andes: the natural science basis for research planning. Mountain Research and Development 1: 115144.CrossRefGoogle Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853858.CrossRefGoogle ScholarPubMed
Parsons, J.J. (1982) The Northern Andean Environment. Mountain Research and Development 2: 153264.CrossRefGoogle Scholar
Podwojewski, P., Poulenard, J., Zambrana, T. & Hofstede, R. (2002) Overgrazing effects on vegetation cover and properties of volcanic ash soils in the páramo of Llangahua and la Espernza (Tungurahua, Ecuador) Soil Use and Management, 18: 4555.CrossRefGoogle Scholar
Porter, S.C. (2001) Snowline depression in the tropics during the last glaciation. Quaternary Science Reviews 20: 10671091.CrossRefGoogle Scholar
Pralong, J.P. (2005) A method for assessing tourist potential and use of geomorphological sites. Géomorphologie: Relief, Processus, Environnement 3: 189196.CrossRefGoogle Scholar
Racoviteanu, A.E., Manley, W.F., Arnaus, Y. & Williams, M.W. (2007) Evaluating digital elevation models for glaciologic applications: an example from Nevado Coropuna, Peruvian Andes. Global and Planetary Change 59: 110125.CrossRefGoogle Scholar
Ramage, J.M., Smith, J.A., Rodbell, D.T. & Seltzer, G.O. (2005) Comparing reconstructed Pleistocene equilibrium-line altitudes in the tropical Andes of central Peru. Journal of Quaternary Science 20: 777788.CrossRefGoogle Scholar
Ramos, V.A. (1999) Plate tectonic setting of the Andean Cordillera. Episodes 22: 183190.CrossRefGoogle Scholar
Recharte, J., Arevalo, R. & Glave, M. (2003) Islas en el Cielo: Conservación de ecosistemas, afirmación de la cultura y prosperidad en las montañas del Perú. Lima, Peru: Instituto de Montaña: 56 pp.Google Scholar
Rodbell, D.T. (1992) Late Pleistocene equilibrium-line reconstructions in the Northern Peruvian Andes. Boreas 21: 4352.CrossRefGoogle Scholar
Rodbell, D.T., Smith, J.A. & Mark, B.G. (2009) Glaciation in the Andes during the Late Glacial and Holocene. Quaternary Science Reviews 28: 21652212.CrossRefGoogle Scholar
Rudloff, W. (1981) World-Climates. With Tables of Climatic Data and Practical Suggestions. Stuttgart, Germany: Wissenschaftliche Verlagsgesellschaft: 632 pp.Google Scholar
Sánchez Vega, I., Cabanillas Soriano, M., Miranda Leiva, A., Poma Rojas, W., Díaz Navarro, J., Terrones Hernández, F. & Bazán Zurita, H. (2005) La Jalca, el ecosistema frío del noroeste peruano. Fundamentos biológicos y ecológicos. Lima, Peru: Minera Janacocha-Geográfica EIRL: 196 pp.Google Scholar
Seijmonsbergen, A.C., De Jong, M.G.G. & de Graaff, L.W.S. (2010) A method for the identification and assessment of significance of geomorphosites in Vorarlberg (Austria), supported by geographical information systems. Memorie Descrittive della Carta Geologica d'Italia 86: 161170.Google Scholar
Seltzer, G.O. (1993) Late-Quaternary glaciation as a proxy for climate change in the Central Andes. Mountain Research and Development 13: 129138.CrossRefGoogle Scholar
Sevink, J. (2009) The Cordillera Blanca Guide: A Unique Landscape Explained. Lima, Peru: The Mountain Institute: 214 pp.Google Scholar
Sharples, C. (2002) Concepts and principles of geoconservation [www document]. URL http://www.dpiwe.tas.gov.au/inter.nsf/Attachments/SJON-57W3YM/$FILE/geoconservation.pdfGoogle Scholar
Shoemaker, R.E. (1977) Informe sobre bosques petrificados del Puyango. La geología y paleontología de los sedimentos cretácicos del Ecuador. Publicación Programa Regional para Desarrollo del Sur del Ecuador Volume 64: 47 pp.Google Scholar
Smith, J., Seltzer, G.O., Rodbell, D.T. & Klein, A.G. (2005) Regional synthesis of regional snowlines in the Tropical Andes, South America. Quaternary International 138–139: 145165.CrossRefGoogle Scholar
Tonneijck, F.H. (2009) Volcanic ash soils in Andean ecosystems. Unravelling organic matter distribution and stabilization. Ph.D. thesis, University of Amsterdam, Amsterdam, the Netherlands: 182 pp.Google Scholar
Torres Torres, V., Vandenberghe, J. & Hooghiemstra, H. (2005) An environmental reconstruction of the sediment infill of the Bogota basin (Colombia) during the last three million years from abiotic and biotic proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 226: 127148.CrossRefGoogle Scholar
Vargas de Eiden, T.L.V. (2006) Environmental policy under political transition: The Peruvian mining sector and the Yanacocha goldmine. Inaugural dissertation, Universität Bonn, Bonn, Germany: 347 pp.Google Scholar
Van der Hammen, T. & Hooghiemstra, H. (1997) Chronostratigraphy and correlation of the Pliocene and Quaternary of Colombia. Quaternary International 40: 8191.CrossRefGoogle Scholar
Weng, C., Bush, M.B., Curtis, J.H., Kolata, A.L., Dillehay, T.D. & Binford, M.W. (2006) Deglaciation and Holocene climate change in the western Peruvian Andes. Quaternary Research 66: 8796.CrossRefGoogle Scholar
Wilson, J.J. (1985) Mapa geologica del cuadrangulo de Chota, Sheet 14f. Sector Energía y Minas, Instituto Geológico Minera y Metalurgico, Republica del Peru.Google Scholar
Wösten, J.H., Ismail, A.B. & van Wijk, A.L.M. (1997) Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78: 2536.CrossRefGoogle Scholar
Wright, H.E. (1983) Late-Pleistocene glaciation and climate around the Junin Plain Central Peruvian highlands. Geografiska Annaler 65: 3543.CrossRefGoogle Scholar