Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T14:26:45.792Z Has data issue: false hasContentIssue false

How are soil carbon and tropical biodiversity related?

Published online by Cambridge University Press:  15 February 2016

DOUGLAS SHEIL*
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003 NO-1432 Ås, Norway
BRENTON LADD
Affiliation:
Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima 33, Perú
LUCAS C. R. SILVA
Affiliation:
Department of Land, Air and Water Resources, University of California Davis, USA
SHAWN W. LAFFAN
Affiliation:
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
MIRIAM VAN HEIST
Affiliation:
Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003 NO-1432 Ås, Norway
*
*Correspondence: Professor Douglas Sheil Tel: +47 67231783 e-mail: [email protected]

Summary

This article discusses how biological conservation can benefit from an understanding of soil carbon. Protecting natural areas not only safeguards the biota but also curtails atmospheric carbon emissions. Opportunities for funding biological conservation could potentially be greater if soil carbon content is considered. In this article current knowledge concerning the magnitude and vulnerability of soil carbon stocks is reviewed and the relationship of these stocks to biological conservation values is explored. Looking at two relatively well-studied tropical regions we find that 15 of 21 animal species of conservation concern in the Virunga Landscape (Central Africa), and nine of ten such species in the Federal District of Brazil (Central Brazil), rely on carbon-rich habitats (alluvial and/or wetlands). At national scales, densities of species, endemics and threatened taxa (plants, mammals, birds, reptiles, amphibians and fish) show positive and significant relations with mean soil carbon content in all but two cases (threatened amphibians and threatened fish). Of more than 1000 threatened species in 37 selected tropical nations, 85% rely on carbon-rich habitats. This tendency is observed in plants, mammals, reptiles, amphibians and crustaceans, while birds appear more evenly distributed. Research to clarify and explore these relationships is needed. Soil carbon offers major opportunities for conservation.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A., Nepstad, D. & Chhatre, A. (2011) Reducing emissions from deforestation and forest degradation. Annual Review of Environment and Resources 36: 373396.Google Scholar
Angelsen, A., Brockhaus, M., Sunderlin, W. D. & Verchot, L. V. (2012) Analysing REDD+: challenges and choices. Bogor, Indonesia: CIFOR.Google Scholar
Armenteras, D., Rodríguez, N. & Retana, J. (2015) National and regional relationships of carbon storage and tropical biodiversity. Biological Conservation 192: 378386.Google Scholar
Asner, G. P., Knapp, D. E., Martin, R. E., Tupayachi, R., Anderson, C. B., Mascaro, J., Sinca, F., Chadwick, K. D., Higgins, M., Farfan, W. & Llactayo, W. (2014) Targeted carbon conservation at national scales with high-resolution monitoring. Proceedings of the National Academy of Sciences of the United States of America 111 (47): E5016E5022.Google ScholarPubMed
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z. & Hatté, C. (2014) Dynamics of carbon in deep soils inferred from carbon stable isotopes signatures: a worldwide meta-analysis. In: EGU General Assembly Conference Abstracts, p. 9052. [www document]. URL http://adsabs.harvard.edu/abs/2014EGUGA..16.9052B Google Scholar
Batjes, N. H. (2011) Soil organic carbon stocks under native vegetation – revised estimates for use with the simple assessment option of the Carbon Benefits Project system. Agriculture, Ecosystems & Environment 142 (3): 365373.Google Scholar
Beaudrot, L., Kroetz, K., Alvarez-Loayza, P., Amaral, I., Breuer, T., Fletcher, C. D., Jansen, P. A., Kenfack, D., Lima, M. G. M., Marshall, A. R., Martin, E. H., Ndoundou-Hockemba, M., O'Brien, T. G., Razafimahaimodison, J. C., Romero-Saltos, H., Rovero, F., Roy, C. H., Sheil, D., Silva, C. E., Spironello, W. R., Valencia, R., Zvoleff, A., Ahumada, J. & Andelman, S. Limited carbon and biodiversity co-benefits for tropical forest mammals and birds. Ecological Applications. http://dx.doi.org/10.1890/15-0935.1.Google Scholar
Berenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E., Durigan, M., Oliveira, R. C. D., Vieira, I. C. G. & Barlow, J. (2014) A large‐scale field assessment of carbon stocks in human‐modified tropical forests. Global Change Biology 20 (12): 37133726.CrossRefGoogle ScholarPubMed
Boddey, R. M., Jantalia, C. P., Conceicao, P. C., Zanatta, J. A., Bayer, C., Mielniczuk, J., Dieckow, J., Dos Santos, H. P., Denardin, J. E., Aita, C. & Giacomini, S. J. (2010) Carbon accumulation at depth in Ferralsols under zero‐till subtropical agriculture. Global Change Biology 16 (2): 784795.Google Scholar
Busch, J. (2013) Supplementing REDD+ with biodiversity payments: the paradox of paying for multiple ecosystem services. Land Economics 89 (4): 655675.CrossRefGoogle Scholar
Cardinale, B. J., Hillebrand, H., Harpole, W., Gross, K. & Ptacnik, R. (2009) Separating the influence of resource ‘availability'from resource ‘imbalance'on productivity–diversity relationships. Ecology Letters 12 (6): 475487.Google Scholar
Castelle, A. J., Johnson, A. W. & Conolly, C. (1994) Wetland and stream buffer size requirements – a review. Journal of Environmental Quality 23 (5): 878882.Google Scholar
CCBA (2015) The Climate, Community & Biodiversity Alliance. [www document]. URL http://www.climate-standards.org/ Google Scholar
Chen, X., Hutley, L. & Eamus, D. (2003) Carbon balance of a tropical savanna of northern Australia. Oecologia 137 (3): 405416.CrossRefGoogle ScholarPubMed
Clark, D. B. & Kellner, J. R. (2012) Tropical forest biomass estimation and the fallacy of misplaced concreteness. Journal of Vegetation Science 23 (6): 11911196.CrossRefGoogle Scholar
Doetterl, S., Van Oost, K. & Six, J. (2012) Towards constraining the magnitude of global agricultural sediment and soil organic carbon fluxes. Earth Surface Processes and Landforms 37 (6): 642655.CrossRefGoogle Scholar
Don, A., Schumacher, J. & Freibauer, A. (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology 17 (4): 16581670.Google Scholar
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., Stiassny, M. L. J. & Sullivan, C. A. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81 (2): 163182.Google Scholar
Eggleston, H., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. (2006) IPCC guidelines for national greenhouse gas inventories. Hayama, Japan: Institute for Global Environmental Strategies.Google Scholar
FAO (2001) Lecture notes on the major soils of the World. Rome, Italy: FAO.Google Scholar
Fearnside, P. M. (2013) What is at stake for Brazilian Amazonia in the climate negotiations. Climatic Change 118 (3): 509519.Google Scholar
Felfili, J. M., Mendonça, R. C. & Walter, B. S. J. M. C. (2001) Flora fanerogâmica das Matas de Galeria e Ciliares do Brasil. In: Cerrado: Caracterização e Recuperação de Matas de Galeria. Planaltina, eds. Ribeiro, J. F., Fonseca, C. E. L. & Sousa-Silva, J. C., pp. 195263. Brazil: EMBRAPA/Cerrados.Google Scholar
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B. & Rumpel, C. (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450 (7167): 277280.Google Scholar
Franco, A., Rossatto, D., de Carvalho Ramos Silva, L. & da Silva Ferreira, C. (2014) Cerrado vegetation and global change: the role of functional types, resource availability and disturbance in regulating plant community responses to rising CO2 levels and climate warming. Theoretical and Experimental Plant Physiology 26 (1): 1938.CrossRefGoogle Scholar
Fujisaki, K., Perrin, A. S., Desjardins, T., Bernoux, M., Balbino, L. C. & Brossard, M. (2015) From forest to cropland and pasture systems: a critical review of soil organic carbon stocks changes in Amazonia. Global Change Biology. 21 (7): 27732786.Google Scholar
Gardner, T. A., Burgess, N. D., Aguilar-Amuchastegui, N., Barlow, J., Berenguer, E., Clements, T., Danielsen, F., Ferreira, J., Foden, W. & Kapos, V. (2012) A framework for integrating biodiversity concerns into national REDD+ programmes. Biological Conservation 154: 6171.CrossRefGoogle Scholar
GCP (2014) The Global Carbon Project [www document]. URL http://www.globalcarbonproject.org/ Google Scholar
Ghazoul, J. & Sheil, D. (2010) Tropical Rain Forests Ecology, Diversity and Conservation. Oxford, UK: Oxford University Press.Google Scholar
Giam, X., Koh, L. P., Tan, H. H., Miettinen, J., Tan, H. T. W. & Ng, P. K. L. (2012) Global extinctions of freshwater fishes follow peatland conversion in Sundaland. Frontiers in Ecology and the Environment 10 (9): 465470.Google Scholar
Gleixner, G. (2013) Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies. Ecological Research 28 (5): 683695.Google Scholar
Gumbricht, T. (2012) Mapping global tropical wetlands from earth observing satellite imagery. Bogor, Indonesia: CIFOR.Google Scholar
Hairston, N. G. Jr & Hairston, N. G. Sr (1993) Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. American Naturalist 142 (3): 379411.Google Scholar
Harper, R. & Tibbett, M. (2013) The hidden organic carbon in deep mineral soils. Plant and Soil 368 (1): 641648.Google Scholar
Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O'Brien, E. M. & Porter, E. E. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84 (12): 31053117.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25 (15): 19651978.Google Scholar
Hooijer, A., Page, S., Jauhiainen, J., Lee, W., Lu, X., Idris, A. & Anshari, G. (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9 (3): 10531071.Google Scholar
Houghton, R. A. (2007) Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences 35: 313347.CrossRefGoogle Scholar
IPCC (2013) Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (Wetlands Supplement), eds. Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. & Troxler, T. G.. Switzerland: IPCC Google Scholar
IUCN (2013; updated 2015) The IUCN Red List of threatened species. [www document]. URL http://www.iucnredlist.org Google Scholar
Jobbágy, E. G. & Jackson, R. B. (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10 (2): 423436.Google Scholar
Junk, W. J., Brown, M., Campbell, I. C., Finlayson, M., Gopal, B., Ramberg, L. & Warner, B. G. (2006) The comparative biodiversity of seven globally important wetlands: a synthesis. Aquatic Sciences 68 (3): 400414.Google Scholar
Ladd, B., Laffan, S. W., Amelung, W., Peri, P. L., Silva, L. C. R., Gervassi, P., Bonser, S. P., Navall, M. & Sheil, D. (2013) Estimates of soil carbon concentration in tropical and temperate forest and woodland from available GIS data on three continents. Global Ecology and Biogeography 22 (4): 461469.Google Scholar
Lal, R. (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123 (1): 122.Google Scholar
Loftus, P. J., Cohen, A. M., Long, J. & Jenkins, J. D. (2015) A critical review of global decarbonization scenarios: what do they tell us about feasibility? Wiley Interdisciplinary Reviews: Climate Change 6 (1): 93112.Google Scholar
Lowe, W. H., Likens, G. E. & Power, M. E. (2006) Linking scales in stream ecology. BioScience 56 (7): 591597.Google Scholar
MacNally, R., Bennett, A. F., Thomson, J. R., Radford, J. Q., Unmack, G., Horrocks, G. & Vesk, P. A. (2009) Collapse of an avifauna: climate change appears to exacerbate habitat loss and degradation. Diversity and Distributions 15 (4): 720730.Google Scholar
McCarthy, D. P., Donald, P. F., Scharlemann, J. P., Buchanan, G. M., Balmford, A., Green, J. M., Bennun, L. A., Burgess, N. D., Fishpool, L. D. & Garnett, S. T. (2012) Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338 (6109): 946949.Google Scholar
Meijaard, E. & Sheil, D. (2013) Oil palm plantations in the context of biodiversity conservation. In: Encyclopedia of Biodiversity (2nd Edition), ed. Levin, S. A., pp. 600612. The Nethelands; Elsevier.Google Scholar
Mitchard, E. T., Saatchi, S. S., Baccini, A., Asner, G. P., Goetz, S. J., Harris, N. L. & Brown, S. (2013) Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance and Management 8 (10): 113.CrossRefGoogle ScholarPubMed
Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., Jørgensen, S. E. & Brix, H. (2013) Wetlands, carbon, and climate change. Landscape Ecology 28 (4): 583597.Google Scholar
Moore, J. C., Berlow, E. L., Coleman, D. C., Ruiter, P. C., Dong, Q., Hastings, A., Johnson, N. C., McCann, K. S., Melville, K., Morin, P. J. & Nadelhoffer, K. (2004) Detritus, trophic dynamics and biodiversity. Ecology Letters 7 (7): 584600.Google Scholar
Murdiyarso, D., Donato, D., Kauffman, J. B., Kurnianto, S., Stidham, M. & Kanninen, M. (2009) Carbon storage in mangrove and peatland ecosystems: a preliminary account from plots in Indonesia. Working Paper 48. Bogor, Indonesia: CIFOR.Google Scholar
Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S. & Kurnianto, S. (2015) The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change 5 (12): 10891092.Google Scholar
Murray, J. P., Grenyer, R., Wunder, S., Raes, N. & Jones, J. P. (2015) Spatial patterns of carbon, biodiversity, deforestation threat, and REDD+ projects in Indonesia. Conservation Biology. 29 (5): 14341445.Google Scholar
Nachtergaele, F., Van Velthuizen, H., Verelst, L., Batjes, N., Dijkshoorn, K., Van Engelen, V., Fischer, G., Jones, A., Montanarella, L., Petri, M. & Prieler, S. (2008) Harmonized world soil database. Rome, Italy: FAO.Google Scholar
Naiman, R. J., Decamps, H. & Pollock, M. (1993) The role of riparian corridors in maintaining regional biodiversity. Ecological Applications 3 (2): 209212.CrossRefGoogle ScholarPubMed
Newbold, T., Hudson, L. N., Hill, S. L., Contu, S., Lysenko, I., Senior, R. A., Börger, L., Bennett, D. J., Choimes, A., Collen, B., Day, J., De Palma, A., Diaz, S., Echeverria-Londono, S., Edgar, M. J., Feldman, A., Garon, M., Harrison, M. L. K., Alhusseini, T., Ingram, D. J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Correia, D. L. P., Martin, C. D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H. R. P., Purves, D. W., Robinson, A., Simpson, J., Tuck, S. L., Weiher, E., White, H. J., Ewers, R. M., Mace, G. M., Scharlemann, J. P. W. & Purvis, A. (2015) Global effects of land use on local terrestrial biodiversity. Nature 520 (7545): 4550.Google Scholar
Paiva, A. O., Silva, L. C. R. & Haridasan, M. (2015) Productivity-efficiency tradeoffs in tropical forest-savanna transitions: linking plant and soil processes through litter input and composition. Plant Ecology 216, 775787.Google Scholar
Phelps, J., Webb, E. L. & Adams, W. M. (2012) Biodiversity co-benefits of policies to reduce forest-carbon emissions. Nature Climate Change 2 (7): 497503.Google Scholar
Plumptre, A. J., Kujirakwinja, D., Treves, A., Owiunji, I. & Rainer, H. (2007) Transboundary conservation in the greater Virunga landscape: its importance for landscape species. Biological Conservation 134 (2): 279287.Google Scholar
REDD+ SES (2015) REDD+ Social & Environmental Standards [www document]. URL http://www.redd-standards.org/ Google Scholar
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A., Godderis, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R., Suntharalingam, P. & Thullner, M. (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience 6 (8): 597607.Google Scholar
Rieley, J., Page, S. & Shepherd, P. (1997) Tropical bog forests of South East Asia. In: Conserving Peatlands, eds. Parkyn, L., Stoneman, R. & Ingram, H., pp. 3541. Wallingford, UK: CABI.Google Scholar
Roberts, L. (1998) World Resources 1998–99. Washington D.C., USA: World Resources Institute; United Nations Environment Programme; United Nations Development Programme; World Bank.Google Scholar
Romdal, T. S., Araújo, M. B. & Rahbek, C. (2013) Life on a tropical planet: niche conservatism and the global diversity gradient. Global Ecology and Biogeography 22 (3): 344350.Google Scholar
Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5 (1): 8191.Google Scholar
Sheil, D., Meijaard, E., Angelsen, A., Sayer, J. & Vanclay, J. K. (2013) Sharing future conservation costs. Science 339 (6117): 270271.Google Scholar
Shi, S., Zhang, W., Zhang, P., Yu, Y. & Ding, F. (2013) A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. Forest Ecology and Management 296: 5363.Google Scholar
Silva, L.C.R. (2014) The importance of climate-driven forest-savanna biome shifts in anthropological and ecological research. Proceedings of the National Academy of Sciences of the United States of America 111 (37) E3831–E3832.Google ScholarPubMed
Silva, L. C. R., Doane, T. A., Corrêa, R. S., Valverde, V., Pereira, E. I. P. & Horwath, W. R. (2015) Iron-mediated stabilization of soil carbon amplifies the benefits of ecological restoration in degraded lands. Ecological Applications 25 (5): 12261234.Google Scholar
Silva, L. C. R., Sternberg, L. S. L., Haridasan, M., Hoffmann, W. A., Miralles-Wilhelm, F. & Franco, A. C. (2008) Expansion of gallery forests into central Brazilian savannas. Global Change Biology 14 (9): 21082118.CrossRefGoogle Scholar
Silva, L., Hoffmann, W. A., Rossatto, D. R., Haridasan, M., Franco, A. C. & Horwath, W. R. (2013a) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant and Soil 373 (1): 829842.Google Scholar
Silva, L., Corrêa, R., Doane, T. A., Pereira, E. & Horwath, W. R. (2013b) Unprecedented carbon accumulation in mined soils: the synergistic effect of resource input and plant species invasion. Ecological Applications 23:13451356.CrossRefGoogle ScholarPubMed
Slik, J., Raes, N., Aiba, S. I., Brearley, F. Q., Cannon, C. H., Meijaard, E., Nagamasu, H., Nilus, R., Paoli, G., Poulsen, A. D., Sheil, D., Suzuki, E., Van Valkenburg, J. L. C. H., Webb, C. O., Wilkie, P. & Wulffraat, S. (2009) Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Diversity and Distributions 15 (3): 523532.Google Scholar
Smith, P., Davies, C. A., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., Boddey, R. M., McNamara, N. P., Powlson, D., Cowie, A., van Noordwijk, M., Davis, S. C., Richter, D. D. E. B., Kryzanowski, L., van Wijk, M. T., Stuart, J., Kirton, A., Eggar, D., Newton-Cross, G., Adhya, T. K. & Braimoh, A. K. (2012) Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Global Change Biology 18 (7): 20892101.Google Scholar
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., de Courcelles, V. d. R., Singh, K. & Wheeler, I. (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment 164: 8099.Google Scholar
Streck, C. & Parker, C. (2012) Financing REDD+. In: Analysing REDD+: Challenges and Choices, eds. Angelsen, A., Brockhaus, M., Sunderlin, W. & Verchot, L., pp. 111127. Bogor, Indonesia: CIFOR.Google Scholar
Thomas, S. C. & Martin, A. R. (2012) Carbon content of tree tissues: a synthesis. Forests 3 (2): 332352.Google Scholar
Tiessen, H., Cuevas, E. & Chacon, P. (1994) The role of soil organic-matter in sustaining soil fertility. Nature 371 (6500): 783785.Google Scholar
Tilman, D., Reich, P. B. & Isbell, F. (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences of the United States of America 109 (26): 1039410397.CrossRefGoogle ScholarPubMed
Twongyirwe, R., Sheil, D., Majaliwa, J. G. M., Ebanyat, P., Tenywa, M. M., van Heist, M. & Kumar, L. (2013) Variability of soil organic carbon stocks under different land uses: a study in an afro-montane landscape in southwestern Uganda. Geoderma 193: 282289.Google Scholar
van Noordwijk, M., Agus, F., Dewi, S. & Purnomo, H. (2014) Reducing emissions from land use in Indonesia: motivation, policy instruments and expected funding streams. Mitigation and Adaptation Strategies for Global Change 19 (6): 677692.Google Scholar
van Noordwijk, M., Woomer, P., Cerri, C., Bernoux, M. & Nugroho, K. (1997) Soil carbon in the humid tropical forest zone. Geoderma 79: 187225.Google Scholar
Venter, O., Laurance, W. F., Iwamura, T., Wilson, K. A., Fuller, R. A. & Possingham, H. P. (2009a) Harnessing carbon payments to protect biodiversity. Science 326 (5958): 1368.Google Scholar
Venter, O., Meijaard, E., Possingham, H., Dennis, R., Sheil, D., Wich, S., Hovani, L. & Wilson, K. (2009b) Carbon payments as a safeguard for threatened tropical mammals. Conservation Letters 2 (3): 123129.Google Scholar
Waldron, A., Mooers, A. O., Miller, D. C., Nibbelink, N., Redding, D., Kuhn, T. S., Roberts, J. T. & Gittleman, J. L. (2013) Targeting global conservation funding to limit immediate biodiversity declines. Proceedings of the National Academy of Sciences of the United States of America 110 (29): 1214412148.Google Scholar
Webster, K., Creed, I., Beall, F. & Bourbonnière, R. (2011) A topographic template for estimating soil carbon pools in forested catchments. Geoderma 160 (3): 457467.Google Scholar
Willig, M. R. (2011) Biodiversity and productivity. Science 333 (6050): 17091710.Google Scholar
Xiang, S.-R., Doyle, A., Holden, P. A. & Schimel, J. P. (2008) Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry 40 (9): 22812289.Google Scholar
Young, A. (1997) Agroforestry for Soil Management. Wallingford, UK: CABI.Google Scholar
Supplementary material: File

Sheil supplementary material

Appendices

Download Sheil supplementary material(File)
File 71.2 KB