Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T13:46:18.589Z Has data issue: false hasContentIssue false

Foreseeable Effects of CO2 -induced Climatic Change: Freshwater Concerns

Published online by Cambridge University Press:  24 August 2009

Charles C. Coutant
Affiliation:
Senior Research Ecologist, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA.

Extract

Freshwater environments are expected to be particularly responsive to temperature rises and changed precipitation régimes that are anticipated to result from progressive increases in atmospheric carbon dioxide from fossil-fuel combustion. Recognition of potential impacts on aquatic systems should strengthen research and management planning for the future, and provide more confident estimates of the risks from CO2 elevation than those at present available. This report briefly evaluates those aquatic impacts that are believed to be important and worthy of investigation and quantitative forecasting.

Priorities for additional research have been suggested for the issues discussed herein. These priorities vary according to the use of pertinent data, the credibility of presumed risk (which may change as, for example, climatic models are better refined), the timing in relation to prerequisite information, current efforts already under way, and the feasibility of obtaining the desired data. The ranking remains subjective, however, and debatable.

Type
Main Papers
Copyright
Copyright © Foundation for Environmental Conservation 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, D. E. (1968). Thermal Pollution of Cayuga Lake by a Proposed Power Plant. Citizens Committee to Save Cayuga Lake, Ithaca, NY, USA: 12 pp.Google Scholar
Bach, W., Brohl, H., Fischbach, U., Goudriaan, J., Hampicke, U., Kohlmaier, G. H., Kratz, G., Louwerse, W., Marchetti, C., Niehaus, F., Oeschger, H., Roether, W., Rotty, R. M., Schunck, W., Siegenthaler, U., Van Keulen, H. & Van Laar, H. H. (1980), The carbon dioxide problem: An interdisciplinary survey. Experimentia, 36, pp. 767890.Google Scholar
Brylinsky, M. & Mann, K. H. (1973). An analysis of factors governing productivity in lakes and reservoirs. Limnol. Oceanogr., 18, pp. 114.CrossRefGoogle Scholar
Budiansky, S. (1980). Climate modeling. Environ. Sci. Technol., 14, pp. 501–7.Google Scholar
Cornett, R. J. & Rigler, F. H. (1979). Hypolimnetic oxygen deficits: Their prediction and interpretation. Science, 205, pp. 580–1.CrossRefGoogle ScholarPubMed
Dodson, S. I. (1975). Predation rates of zooplankton in arctic ponds. Limnol. Oceanogr., 20, pp. 426–33.CrossRefGoogle Scholar
Eipper, A. W., Carlson, C. A. & Hamilton, L. S. (1970). Impacts of nuclear power plants on the environment. Living Wilderness, 08, pp. 512.Google Scholar
Erkkila, L. F., Moffett, J. W., Cope, O. B., Smith, B. F. & Nielson, R. S. (1950). Sacramento-San Joaquin Delta Fishery Resources: Effects of Tracy Pumping Plant and Delta Cross Channel. US Fish and Wildl. Serv., Spec. Sci. Rept Fish. No. 56, ii + 109 pp., illustr.Google Scholar
Gavis, J. & Ferguson, J. F. (1975). Kinetics of carbon dioxide uptake by phytoplankton at high pH. Limnol. Oceanogr., 20, pp. 211–21.CrossRefGoogle Scholar
Goldman, J. C. (1973). Carbon dioxide and pH: Effect on species succession of Algae. Science, 182, pp. 306–7.Google Scholar
Jorgensen, S. E. (1978). Modelling the eutrophication of lakes. Ecol. Model., 4, pp. 77310.Google Scholar
Kalff, J. & Knoechel, R. (1978). Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. An. Rev. Ecol. Syst., 9, pp. 475–95.Google Scholar
Kaya, C. M. (1977). Reproductive biology of Rainbow and Brown Trout in a geothermally heated stream: The Firehole River of Yellowstone National Park. Trans. Am. Fish. Soc., 106, pp. 354–61.Google Scholar
King, D. L. (1970). The role of carbon in eutrophication. J. Water Pollut. Control Fed., 42, pp. 2035–51.Google Scholar
Lippson, A. J., Haire, M. S., Holland, A. F., Jacobs, F., Jensen, J., Moran-Johnson, R. L., Polgar, T. T. & Richkus, W. R., (1979). Environmental Atlas of the Potomac Estuary. Martin Marietta Environmental Center for Maryland Department of Natural Resources, Power Plant Siting Program, Baltimore, Maryland, USA: vi + 279 pp. + 9 folio maps.Google Scholar
MacCrimmon, H. R. & Gots, B. L. (1979). World distribution of Atlantic Salmon. Salmo salar. J. Fish. Res. Board Can., 36, pp. 422–57.CrossRefGoogle Scholar
Manabe, S. & Wetherald, R. (1980). On the distribution of climatic change resulting from an increase in CO2 content in the atmosphere. J. Atmos. Sci., 37, pp. 99118, illustr.Google Scholar
Mulholland, P. J. & Kuenzler, E. J. (1979). Organic carbon export from upland and forested wetland watersheds. Limnol. Oceanogr., 24, pp. 960–6.CrossRefGoogle Scholar
Porcella, D. B. & Medine, A. J. (1979). Eutrophication. J. Water Pollut. Control Fed., 51, pp. 1455–63.Google Scholar
Richey, J. E. (1978). An empirical and mathematical approach toward the development of a phosphorus model of Castle Lake, California. Pp. 267–87 in Ecosystem Modeling in Theory and Practice: An Introduction with Case Histories (Ed. Hall, C. A. S. & Day, J. W.). John Wiley & Sons, New York, NY, USA: xxiii + 684 pp., illustr.Google Scholar
Richey, J. E., Brock, J. T., Naiman, R. J., Wissmar, R. C. & Stallard, R. F. (1980). Organic carbon: Oxidation and transport in the Amazon River. Science, 207, pp. 1348–51.Google Scholar
Rigler, F. H. (1972). The Char Lake Project. A study of energy flow in a high arctic lake. Pp. 287300 in Productivity Problems in Freshwaters (Ed. Kajak, Z. & Hillbricht-Ilkowska, A.). Polish Science Publications, Warsaw, Poland: 577 pp., illustr.Google Scholar
Roff, J. C. & Carter, J. C. H. (1972). Life cycle and seasonal abundance of the copepo. Limnocalanus macrurus Sars in a high arctic lake. Limnol. Oceanogr., 17, pp. 363–70.Google Scholar
Schaich, B. A. & Coutant, C. C. (1980). A Biotelemetry Study of Spring and Summer Habitat Selection by. Striped Bass in Cherokee Reservoir, Tennessee, 1978. ORNL/TM-7127, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA: xvi + 203 pp., illustr.Google Scholar
Schindler, D. W. (1978 a). Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnol. Oceanogr., 23, pp. 478–86.CrossRefGoogle Scholar
Schindler, D. W. (1978 b). Predictive eutrophication models. Limnol. Oceanogr., 23, pp. 1080–2.Google Scholar
Schreiber, R. K., Stephenson, R. L., Goff, F. G., West, D. C. & Muse, G. (1974). Geoecology Information System. Part I. Biogeographic Mapping of Species Ranges. EDFB/ IBP-74/5. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA: vii + 44 pp., illustr.Google Scholar
Schuter, B. J., Maclean, J. A., Fry, F. E. J. & Regier, H. A. (1980). Stochastic simulation of temperature effects on first-year survival of Smallmouth Bass. Trans. Am. Fish. Soc., 109, pp. 184.Google Scholar
Shapiro, J. (1973a). Carbon dioxide and pH: Effect on species succession of Algae (comment). Science, 182, p. 307.Google Scholar
Shapiro, J. (1973b). Blue-green Algae: Why they become dominant. Science, 179, pp. 382–4.Google Scholar
Vannote, R. L. & Sweeney, B. W. (1980). Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat., 115, pp. 667–95.Google Scholar
Welch, H. E. (1974). Metabolic rates of arctic lakes. Limnol. Oceanogr., 19, pp. 6573.Google Scholar
Wigley, T. M. L., Jones, P. D. & Kelley, P. M. (1980). Scenario for a warm, high-CO2 world. Nature (London), 283, pp. 1721, illustr.CrossRefGoogle Scholar