Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T09:16:48.612Z Has data issue: false hasContentIssue false

Atmospheric Ozone Trends and Other Factors of Surface Ultraviolet Radiation Variability

Published online by Cambridge University Press:  24 August 2009

Kirill Y. Kondratyev
Affiliation:
Research Centre for Ecological Safety, Russian Academy of Sciences, 18 Korpusnaya Street, 197042 St Petersburg, Russia
Oleg M. Pokrovsky
Affiliation:
Main Geophysical Observatory, 7 Karbyshev Street, 194021 St Petersburg, Russia
Costas A. Varotsos
Affiliation:
Laboratory of Meteorology, Department of Applied Physics, University of Athens, 33 Ippokratous Street, 10680 Athens, Greece.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Short Communications & Reports
Copyright
Copyright © Foundation for Environmental Conservation 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambach, W. & Blumthaler, M. (1994). Characteristics of solar UV. Strahlung. Meteorol. Z., 3(4), pp. 211–20.CrossRefGoogle Scholar
Beck, J.P. & Greenfelt, P. (1994). Estimate of ozone production and destruction over Northwestern Europe. Atmos. Environ., 28(1), pp. 129–40.CrossRefGoogle Scholar
Blumthaler, M. & Ambach, W. (1990). Indication of increasing solar ultraviolet-B radiation flux in Alpine regions. Science, 248, pp. 206–8.CrossRefGoogle ScholarPubMed
Bojkov, R., Bishop, L., Hill, W.J., Reinsel, G.C. & Tiao, G.C. (1990). A statistical trend analysis of revised Dobson total ozone data over the Northern Hemisphere. J. Geoph. Res., 95, pp. 9785–807.CrossRefGoogle Scholar
Caldwell, M.M. & Flint, S.D. (1994). Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Climatic Change, 28(4), pp. 375–94.CrossRefGoogle Scholar
Dalyuk, I. V. & Pokrovsky, O.M. (1994). [Analysis of intra-annual oscillations of the ozone content by satellite and ground based data.] Studying the Earth from Space, 5, pp. 916 [in Russian].Google Scholar
Dalyuk, I.V. & Pokrovsky, O.M. (in press). [On the forecasting of the intra-annual total ozone distribution.] Reports of the Russian Academy of Sciences 1995 (in press) [in Russian].Google Scholar
Ellsaesser, H.W. (1994). The unheard arguments: a rational view of stratospheric ozone. 21st Century Science and Technology, 7(3), pp. 3745.Google Scholar
Frederick, J.E. (1990). Trends in atmospheric ozone and ultraviolet radiation: mechanisms and observations for Northern Hemisphere. Photochem. Photobiol., 51, pp. 757–63.CrossRefGoogle ScholarPubMed
Frederick, J.E. & Lubin, D. (1988). The budget of biologically active ultraviolet radiation in the earth—atmosphere system. J. Geophys. Res., 93, pp. 3825–32.CrossRefGoogle Scholar
Hoffman, D.I. & Solomon, S. (1989). Ozone destruction through heterogeneous chemistry following the eruption of El Chichon. J. Geophys. Res., 94, pp. 5029–41.CrossRefGoogle Scholar
Ilyas, M. (1987). Effect of cloudiness on solar ultraviolet radiation reaching the surface. Atmos. Environ., 21, pp. 1483–4.CrossRefGoogle Scholar
Jacob, D.L., Logan, J.A., Gardner, G.M., Yevich, R.M., Spivakovsky, C.M. & Wofsy, S.C. (1993). Factors regulating ozone over the United States and its export to the global atmosphere. J. Geophys. Res., 98(18), pp. 14817–26.CrossRefGoogle Scholar
Johnson, J.E. & Isaksen, I.S. (1993). Tropospheric ozone chemistry: The impact of cloud chemistry. J. Atmos. Chem., 16(2), pp. 99122.CrossRefGoogle Scholar
Klenk, K.F., Bhartia, P.K., Fleig, A.J., Kaceshwar, V.G., McPeters, R.D. & Smith, P.M. (1982). Total ozone determination from the backscattered ultraviolet (BUV) experiment. J. Appl. Meteor., 21, pp. 1972–84.2.0.CO;2>CrossRefGoogle Scholar
Kley, D.H., Geiss, H. & Mohnen, V.A. (1994). Tropospheric ozone at elevated sites and precursor emissions in the United States and Europe. Atmos. Environ., 28(1), pp. 149–58.CrossRefGoogle Scholar
Kondratyev, K.Y., Buznikov, A.A., Pokrovsky, O.M. & Yanushanets, Yu. (1992). [On assimilation technique for analyses of satellite ozone data to predict atmosphere ozone changes.] Investigations of the Earth from Space, 3, pp. 2634 [in Russian].Google Scholar
Kondratyev, K.Y., Varotsos, C.A. & Cracknell, A.P. (inpress). Total ozone amount trend at St. Peterburg as deduced from Nimbus-7 TOMS observations. Int. J. Remote Sensing.Google Scholar
Liu, S.C., McKeen, S.A. & Madronich, S. (1991). Effects of anthropogenic aerosols on biologically active ultraviolet radiation. Geophys. Res. Lett., 18, pp. 2265–8.CrossRefGoogle Scholar
Lubin, D., Frederick, J.E., Booth, C.R., Lucas, T. & Neuschuler, D. (1989). Measurements of enhanced springtime ultraviolet radiation from Palmer Station, Antarctica. Geophys. Res. Lett., 16, pp. 783–5.CrossRefGoogle Scholar
Madronich, S. (1992). Implications of recent total atmospheric ozone measurements for biologically active radiation reaching the earth's surface. Geophys. Res. Lett., 19(1), pp. 3440.CrossRefGoogle Scholar
McCormick, M.P., Veiga, R.E. & Chu, W.P. (1993). Stratospheric ozone profile and total ozone trends derived from SAGE-I and SAGE-II data. Geophys. Res. Lett., 19, pp. 269–72.CrossRefGoogle Scholar
Michaels, P.J., Singer, S.F., Knappenberger, P.C., Kerr, J.B. & McElroy, C.T. (1994). Analyzing ultraviolet-B radiation: is there a trend? Science, 264, pp. 1341–3.CrossRefGoogle ScholarPubMed
Michelangeli, D.V., Allen, M., Yung, Y.L., Shea, R.L., Crisp, D. & Eluszkiewicz, J. (1992). Enhancement of atmospheric radiation by an aerosol layer. J. Geophys. Res., 97, pp. 865–74.CrossRefGoogle ScholarPubMed
Moussiopoulos, N. (1994). The EUMAC Zooming Model: Model Structure and Applications. EUROTRAC Report 1994, pp. 257–66.Google Scholar
Oltmans, S.J. & Levy, H. II, (1994). Surface ozone measurements from a global network. Atmos. Environ., 28(1), pp. 924.CrossRefGoogle Scholar
Pokrovsky, O.M. & Malygina, A.K. (1985). [On a rational scheme of collecting ozone remote sensing data for the Northern Hemisphere. J Investigations of the Earth from Space, 1, pp. 1016 [in Russian].Google Scholar
Staehelin, J. & Schmid, W. (1991). Trend analysis of tropospheric ozone concentrations utilizing the 20-years data set of ozone balloon sounding over Payerne (Switzerland). Atmos. Environ., 25, pp. 1739–49.CrossRefGoogle Scholar
Stamnes, K., Shlusser, J., Bowen, M., Booth, C. & Lucas, T. (1990). Biologically effective ultraviolet radiation, total ozone abundance and cloud optical depth at McMurdo Station, Antarctica: September 15, 1988 through April 15, 1989. Geophys. Res. Lett., 17, pp. 218–4.CrossRefGoogle Scholar
Stolarski, R.S., Bloomfield, P., McPeters, R.D. & Herman, J.R. (1991). Total ozone trends deduced from Nimbus-7 TOMS data. Geophys. Res. Lett., 18, pp. 1015–8.CrossRefGoogle Scholar
Yue, G.K., McCormick, M.P. & Chiou, E.W. (1991). Stratospheric aerosol optical depth observed by the Stratospheric Aerosol and Gas Experiment II: decay of the El Chichon and Ruiz volcanic perturbations. J. Geophys. Res., 94, pp. 5209–19.CrossRefGoogle Scholar