Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T19:05:58.320Z Has data issue: false hasContentIssue false

Worst-case scenarios for horizontal gene transfer from Lactococcus lactis carrying heterologous genes to Enterococcus faecalis in the digestive tract of gnotobiotic mice

Published online by Cambridge University Press:  15 November 2003

Carl-Alfred Alpert
Affiliation:
Unité d'Ecologie et de Physiologie du Système digestif, INRA, 78352 Jouy-en-Josas, France
Denis D.G. Mater
Affiliation:
Unité d'Ecologie et de Physiologie du Système digestif, INRA, 78352 Jouy-en-Josas, France
Marie-Claude Muller
Affiliation:
Unité d'Ecologie et de Physiologie du Système digestif, INRA, 78352 Jouy-en-Josas, France
Marie-France Ouriet
Affiliation:
Unité d'Ecologie et de Physiologie du Système digestif, INRA, 78352 Jouy-en-Josas, France
Yvonne Duval-Iflah
Affiliation:
Unité d'Ecologie et de Physiologie du Système digestif, INRA, 78352 Jouy-en-Josas, France
Gérard Corthier
Affiliation:
Unité d'Ecologie et de Physiologie du Système digestif, INRA, 78352 Jouy-en-Josas, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since genetically modified (GM) lactic acid bacteria (LAB) might be released in open environments for future nutritional and medical applications, the purpose of this study was to determine an upper limit for the horizontal gene transfer (HGT) in the digestive tract (DT) from Lactococcus lactis carrying heterologous genes (lux genes encoding a bacterial luciferase) to Enterococcus faecalis. Two enterococcal wide host-range conjugative model systems were used: (i) a system composed of a mobilizable plasmid containing the heterologous lux genes and a native conjugative helper plasmid; and (ii) a Tn916-lux transposon. Both systems were tested under the most transfer-prone conditions, i.e. germfree mice mono-associated with the recipient E. faecalis. No transfer was observed with the transposon system. Transfers of the mobilizable plasmid carrying heterologous genes were below 102 transconjugants per g of faeces for a single donor dose and reached between 103 and 104 transconjugants per g of faeces when continuous inoculation of the donor strain was used. Once established in mice, transconjugants persisted at low levels in the mouse DT.

Type
Research Article
Copyright
© ISBR, EDP Sciences, 2003

References

Bertram, J, Strätz, M, Dürre, P (1991) Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J. Bacteriol. 173: 443-448 CrossRef
Bougueleret, L, Bieth, G, Horodniceanu, T (1981) Conjugative, R plasmids in group C and G streptococci. J. Bacteriol. 145: 1102-1105
Bumann, D, Hueck, C, Aebischer, T, Meyer, TF (2000) Recombinant live Salmonella spp. for human vaccination against heterologous pathogens. FEMS Immunol. Med. Microbiol. 27: 357-364 CrossRef
Buu-Hoi, A, Bieth, G, Horaud, T (1984) Broad host range of streptococcal macrolide resistance plasmids. Antimicrob. Agents Chemother. 25: 289-291 CrossRef
Chopin, A, Chopin, MC, Moillo-Batt, A, Langella, P (1984) Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid 11: 260-263 CrossRefPubMed
Clewell, DB (1981) Plasmids, drug resistance, and gene transfer in the genus Streptococcus. Microbiol. Rev. 45: 409-436
Contrepois, M, Gouet, P (1969) Utilisation d'une technique microbiologique pour la mesure de la vitesse des microparti- cules dans le tractus digestif des ruminants. C. R. Acad. Sci. (Paris) 268: 1757-1759
Corthier G, Renault P (1999) Future directions for research on biotherapeutic agents. In Elmer GW, McFarland L, Surawicz C, Totowa NJ, eds, Contribution of genetic approaches on lactic acid bacteria. Biotherapeutic Agents and infectious diseases. Humana Press Inc, pp 269-304
Corthier, G, Delorme, C, Ehrlich, SD, Renault, P (1998) Use of luciferase genes as biosensors to study bacterial physiology in the digestive tract. Appl. Environ. Microbiol. 64: 2721-2722
Davison, J (1999) Genetic exchange between bacteria in the environment. Plasmid 42: 73-91 CrossRef
Davison, J (2002) Towards safer vectors for the field release of recombinant bacteria. Environ. Biosafety Res. 1: 9-18 CrossRef
Drouault, S, Corthier, G, Ehrlich, SD, Renault, P (1999) Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl. Environ. Microbiol. 65: 4881-4886
Drouault, S, Anba, J, Corthier, G (2002) Streptococcus thermophilus is able to produce a beta-galactosidase active during its transit in the digestive tract of germ-free mice. Appl. Environ. Microbiol. 68: 938-941 CrossRef
Engel, HW, Soedirman, N, Rost, JA, van Leeuwen, WJ, van Embden, JD (1980) Transferability of macrolide, lincomycin, and streptogramin resistances between group A, B, and D streptococci, Streptococcus pneumoniae, and Staphylococcus aureus. J. Bacteriol. 142: 407-413
Gonzalez, CF, Kunka, BS (1983) Plasmid transfer in Pediococcus spp.: intergeneric and intrageneric transfer of pIP501. Appl. Environ. Microbiol. 46: 81-89
Goupil-Feuillerat N, Corthier G, Godon JJ, Ehrlich SD, Renault P (2000) Transcriptional and translational regulation of alpha-acetolactate decarboxylase of Lactococcus lactis subsp. lactis. J. Bacteriol. 182: 5399-5408
Gruzza, M, Duval-Iflah, Y, Ducluzeau, R (1992) Colonization of the digestive tract of germ-free mice by genetically engineered strains of Lactococcus lactis: study of recombinant DNA stability. Microb. Releases 1: 165-171
Gruzza, M, Fons, M, Ouriet, MF, Duval-Iflah, Y, Ducluzeau, R (1994) Study of gene transfer in vitro and in the digestive tract of gnotobiotic mice from Lactococcus lactis strains to various strains belonging to human intestinal flora. Microb. Releases 2: 183-189
Hickey, RM, Twomey, DP, Ross, RP, Hill, C (2001) Exploitation of Plasmid pMRC01 to direct transfer of mobilizable plasmids into commercial lactococcal starter strains. Appl. Environ. Microbiol. 67: 2853-2858 CrossRef
Kharazmi, M, Hammes, WP, Hertel, C (2002) Construction of a marker rescue system in Bacillus subtilis for detection of horizontal gene transfer in food. Syst. Appl. Microbiol. 25: 471-477 CrossRef
Langella, P, Chopin, A (1989) Conjugal transfer of plasmid pIP501 from Lactococcus lactis to Lactobacillus delbruckii subsp. bulgaricus and Lactobacillus helveticus. FEMS Microbiol. Lett. 51: 149-152 CrossRef
Langella P, Le Loir Y, Ehrlich SD, Gruss A (1993) Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp. lactis. J. Bacteriol. 175: 5806-5813
Madsen, SM, Arnau, J, Vrang, A, Givskov, M, Israelsen, H (1999) Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol. Microbiol. 32: 75-87 CrossRef
Marra, D, Smith, JG, Scott, JR (1999) Excision of the conjugative transposon Tn916 in Lactococcus lactis. Appl. Environ. Microbiol. 65: 2230-2231
Mercenier, A, Muller-Alouf, H, Grangette, C (2000) Lactic acid bacteria as live vaccines. Curr. Issues Mol. Biol. 2: 17-25
Mercenier, A, Pavan, S, Pot, B (2003) Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr. Pharm. Des. 9: 175-191 CrossRef
Poyart, C, Celli, J, Trieu-Cuot, P (1995) Conjugative transposition of Tn916-related elements from Enterococcus faecalis to Escherichia coli and Pseudomonas fluorescens. Antimicrob. Agents Chemother. 39: 500-506 CrossRef
Pucci, MJ, Monteschio, ME, Kemker, CL (1988) Intergeneric and intrageneric conjugal transfer of plasmid-encoded antibiotic resistance determinants in Leuconostoc spp. Appl. Environ. Microbiol. 54: 281-287
Raibaud, P, Dickinson, AB, Sacquet, E, Charlier, H, Mocquot, G (1966) La microflore du tube digestif. I. Techniques d'étude et milieux de culture proposés. Ann. Inst. Pasteur 110: 568-590
Renault, P (2002) Genetically modified lactic acid bacteria: applications to food or health and risk assessment. Biochimie 84: 1073-1087 CrossRef
Renault, P, Corthier, G, Goupil, N, Delorme, C, Ehrlich, SD (1996) Plasmid vectors for gram-positive bacteria switching from high to low copy number. Gene 183: 175-182 CrossRef
Roberts, AP, Pratten, J, Wilson, M, Mullany, P (1999) Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol. Lett. 177: 63-66 CrossRef
Robinson, K, Chamberlain, LM, Schofield, KM, Wells, JM, Le Page, RW (1997) Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat. Biotechnol. 15: 653-657 CrossRef
Steidler, L, Hans, W, Schotte, L, Neirynck, S, Obermeier, F, Falk, W, Fiers, W, Remaut, E (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289: 1352-1355 CrossRef
Terzaghi, BE, Sandine, WE (1975) Improved medium for lactic streptococci and their phages. Appl. Environ. Microbiol. 29: 807-813
Thompson, JK, McConville, KJ, Nicholson, C, Collins, MA (2001) DNA Cloning in Lactobacillus helveticus by the Exconjugation of Recombinant mob-Containing Plasmid Constructs from Strains of Transformable Lactic Acid Bacteria. Plasmid 46: 188-201 CrossRefPubMed