No CrossRef data available.
Published online by Cambridge University Press: 31 October 2008
§ 1. The importance of proving inequalities of an essentially algebraic nature by “elementary” methods has been emphasised by Hardy (Prolegomena to a Chapter on Inequalities), and by Hardy, Littlewood and Polya (Inequalities). The object of this Note is to show how some of the results in the early stages of Number Theory can be obtained by making a minimum appeal to irrational numbers and the notion of a limit. We use the elementary notion of a logarithm to a base “a” > 1, and make no appeal to the exponential function. The Binomial Theorem is only used for a positive integer index. Our minimum appeal rests in the assumption that a bounded monotone sequence tends to a limit. We adopt throughout the usual notation. Finally, it need scarcely be added that the methods employed are not claimed to be new.