Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-18T19:55:59.521Z Has data issue: false hasContentIssue false

SPECIES IDENTIFICATION OF VACHELLIA PACHYCERAS FROM KUWAIT AND ITS RELATIVES VACHELLIA GERRARDII AND VACHELLIA TORTILIS, BASED ON MULTILOCUS PLASTID GENE SEQUENCES

Published online by Cambridge University Press:  28 November 2017

M. K. Suleiman
Affiliation:
Desert Agriculture and Ecosystems Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat 13109, Kuwait.
A. M. Quoreshi*
Affiliation:
Desert Agriculture and Ecosystems Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat 13109, Kuwait.
N. R. Bhat
Affiliation:
Desert Agriculture and Ecosystems Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat 13109, Kuwait.
A. J. Manuvel
Affiliation:
Desert Agriculture and Ecosystems Program, Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, PO Box 24885, Safat 13109, Kuwait.
*
E-mail for correspondence: [email protected]
Get access

Abstract

The genus Acacia Miller is species-rich, and species discrimination is challenging owing to morphological similarities between closely related species. Naming of specimens is particularly difficult in the Middle East, where confusion in taxonomic identification exists within the context of a wider international debate on the generic systematics of Acacia sensu lato. At least five segregate genera for Acacia s.l. have been advocated: Acacia sensu stricto, Vachellia, Senegalia, Acaciella and Mariosousa. Furthermore, identification to species of the only remaining native Acacia s.l. tree in Kuwait is still a matter of controversy. The present study used multilocus chloroplast DNA sequence data analyses following maximum likelihood (ML) and Bayesian approaches to: 1) test the species concepts of Vachellia pachyceras (≡ Acacia pachyceras O.Schwartz) from the Middle East, and Vachellia tortilis (Forssk.) Galasso & Banfi (≡ Acacia tortilis (Forssk.) Hayne) and Vachellia gerrardii (Benth.) P.J.H.Hurter (≡ Acacia gerrardii Benth.) from Kenya, as well as to investigate species divergence times; and 2) identify the only remaining native Acacia s.l. tree in Kuwait (known as the Lonely Tree), as well as other unidentified Acacia s.l. specimens in cultivation. The Bayesian and ML topologies clearly differentiated Vachellia pachyceras, V. tortilis and V. gerrardii, and demonstrated that the three species are distinct. Divergence time estimates using the ML topology suggested that Vachellia gerrardii diverged from a common ancestor no later than the early Pliocene (3.3 Mya), whereas V. pachyceras originated at least 2.0 Mya (Pliocene). The unknown remaining native Acacia s.l. tree in Kuwait and other specimens collected from the nursery were identified as Vachellia pachyceras. These results stress the need to use plastid DNA barcodes complemented by population genetics approaches to address systematic issues in this complex of Acacia s.l. species in the Middle East and the Arabian Peninsula.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh (2017) 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulfatih, H. A. (1981). Wild plants of Abha and its surroundings. Proc. Saudi Biol. Soc. 5: 143159 Google Scholar
Adamski, D. J., Dudley, N. S., Morden, C. W. & Borthakur, D. (2012). Genetic differentiation and diversity of Acacia koa populations in the Hawaiian Islands. Pl. Spec. Biol. 27 (3): 181190.CrossRefGoogle Scholar
Bafeel, S. O., Arif, I. A. & Bakir, M. A. (2012). DNA barcoding of arid wild plants using rbcL gene sequences. Genet. Molec. Res. 11 (3): 19341941.Google Scholar
Blouin, M. S. (2003). DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol. Evol. 18 (10): 503511.CrossRefGoogle Scholar
Bouchenak-Khelladi, Y., Maurin, O., Hurter, J. & van der Bank, M. (2010). The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis on African acacias. Molec. Phylogen. Evol. 57 (2): 495508.Google Scholar
Boulos, L. (1995). Notes on Acacia Mill. Studies on the Leguminosae of Arabia: I. Kew Bull. 50 (2): 327337.Google Scholar
Boulos, L. & Al-Dosari, M. (1994). Checklist of the flora of Kuwait. J Univ. Kuwait 21: 203218.Google Scholar
Brenan, J. P. M. (1983). FAO Document Repository Manual on Taxonomy of Acacia species. Present Taxonomy of Four Species of Acacia (A. albida, A. senegal, A. nilotica, A. tortilis). Online. Available: http://www.fao.org/docrep/006/Q2934E/Q2934E00.HTM Google Scholar
Byrne, M. (2008). Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quatern. Sci. Rev. 27 (27–28): 25762585.Google Scholar
Chaudhary, S. A. (1999). Flora of the Kingdom of Saudi Arabia, vol. 1. Riyadh: Ministry of Agriculture and Water.Google Scholar
Collins, R. A. & Cruickshank, R. H. (2013). The seven deadly sins of DNA barcoding. Molec. Ecol. Resources 13 (6): 969973.CrossRefGoogle ScholarPubMed
Dannin, A. (2000). The nomenclature news of Flora Palestina. Flora Medit. 10: 109172.Google Scholar
deMenocal, P. B. (1995). Plio-Pleistocene African climate. Science 270 (5233): 5359.Google Scholar
Dickson, V. (1955). The Wild Flowers of Kuwait and Bahrain, pp. i–xi, 1224. London: George Allen & Unwin.Google Scholar
Dupuis, J. R., Roe, A. D. & Sperling, F. A. H. (2012). Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Molec. Ecol. 21 (18): 44224436.Google Scholar
Fredua-Agyeman, R., Adamski, D., Liao, R. J., Morden, C. & Borthakur, D. (2008). Development and characterization of microsatellite markers for analysis of population differentiation in the tree legume Acacia koa (Fabaceae: Mimosoideae) in the Hawaiian Islands. Genome 51 (12): 10011015.Google Scholar
Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A. & Moritz, C. (2012). Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol. 27 (9): 480488.Google Scholar
Gelman, A. & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statist. Sci. 7 (4): 457472.Google Scholar
Gómez-Acevedo, S. G., Arce, L. R., Salinas, A. D., Magallón, S. & Eguiarte, L. E. (2010). Neotropical mutualism between Acacia and Psedomymex: phylogeny and divergence times. Molec. Phylogen. Evol. 56 (1): 393408.Google Scholar
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 9598.Google Scholar
Hasegawa, M., Kishino, H. & Yano, T. (1985). Dating the human–ape splitting by a molecular clock of mitochondrial DNA. J. Molec. Evol. 22 (2): 160174.Google Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. (2003). Biological identifications through DNA barcodes. Proc. Roy. Soc. London 207 (1512): 313321.Google Scholar
Huelsenbeck, J., Larget, B., van der Mark, P., Ronquist, F., Simon, D. & Teslenko, M. (no date). Mr Bayes: Bayesian Inference of Phylogeny. Online. Available: http://mrbayes.csit.fsu.edu/ Google Scholar
Khasa, D. P., Jaramillo-Correa, J. P., Jaquish, B. & Bousquet, J. (2006). Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Molec. Ecol. 15 (13): 39073918.Google Scholar
Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. (2013). Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia . Bot. J. Linn. Soc. 172 (4): 500523.Google Scholar
Luckow, M., Hughes, C., Schrire, B., Winter, P., Fagg, Fortunato, R., Hurter, J., Rico, L., Breteler, F. J., Bruneau, A., Caccavari, M., Craven, L., Crisp, M., Delgado, A., Demissew, S., Doyle, J. J., Grether, R., Harris, S., Herendeen, P. S., Hernández, H. M., Hirsch, A. M., Jobson, R., Klitgaard, B. B., Labat, J.-N., Lock, M., MacKinder, B., Pfeil, B., Simpson, B. B., Smith, G. F., Sousa, M., Timberlake, J., van der Maesen, J. G., Van Wyk, A. E., Vorster, P., Willis, C. K., Wieringa, J. J. & Wojciechowski, M. F. (2005). Acacia: the case against moving the type to Australia. Taxon 54 (2): 513519.Google Scholar
Maslin, B. R. (2006). Generic and Intrageneric Names in Acacia Following Retypification of the Genus. Online. Available: http://www.worldwidewattle.com/infogallery/taxonomy/names-for-acacia-following-ibc.pdf Google Scholar
Maslin, B. R. & Orchard, T. (2004). Proposed name changes for Acacia and how these might affect Australian species. Austral. Pl. 22 (180): 300303.Google Scholar
Maslin, B. R. & Orchard, T. (2009). Acacia – the final decision. Online. Available: http://worldwidewattle.com/infogallery/nomenclature/nameissue/decision.php Google Scholar
Maslin, B. R., Miller, J. T. & Seigler, D. S. (2003a). Overview of the generic status of Acacia (Leguminoseae: Mimosoideae). Austral. Syst. Bot. 16 (1): 118.CrossRefGoogle Scholar
Maslin, B. R., Orchard, A. E. & West, J. G. (2003b). Nomenclatural and classification history of Acacia (Leguminosae: Mimosoideae), and the implications of generic subdivision. Online. Available: http://worldwidewattle.com/infogallery/taxonomy/nomen-class.pdf Google Scholar
Miller, J. T. & Bayer, R. J. (2001). Molecular phylogenetics of Acacia (Fabaceae: Mimosoideae) based on the chloroplast matK coding sequence and flanking trnK intron spacer regions. Amer. J. Bot. 88 (4): 697705.CrossRefGoogle ScholarPubMed
Miller, J. T. & Bayer, R. J. (2003). Molecular phylogenetics of Acacia subgenera Acacia and Aculeiferum (Fabaceae: Mimosoideae), based on the chloroplast matK coding sequence and flanking trnK intron spacer regions. Austral. Syst. Bot. 16 (1): 2733.Google Scholar
Miller, J. T. & Seigler, D. (2012). Evolutionary and taxonomic relationships of Acacia s.l. (Leguminosae: Mimosoideae). Austral. Syst. Bot. 25 (3): 217224.Google Scholar
Miller, J. T., Andrew, R. & Bayer, R. J. (2003a). Molecular phylogenetics of the Australian acacias of subg. Phyllodineae (Fabaceae: Mimosoideae) based on the trnK intron. Austral. J. Bot. 51 (2): 167177.CrossRefGoogle Scholar
Miller, J. T., Grimes, J. W., Murphy, D. J., Bayer, R. J. & Ladiges, P. Y. (2003b). A phylogenetic analysis of the Acacieae and Ingeae (Mimosoideae: Fabaceae) based on trnK, matK, psbA-trnH, and trnL/trnF sequence data. Austral. Syst. Bot. 28 (3): 558566.Google Scholar
Moore, G., Smith, G. F., Figueiredo, E., Demissew, S., Lewis, G., Schrire, B., Rico, L. & van Wyk, A. E. (2011). Acacia, the 2011 nomenclature section in Melbourne, and beyond. Taxon 59 (4): 11881195.Google Scholar
Murphy, D. J., Miller, J. T., Bayer, R. J. & Ladiges, P. Y. (2003). Molecular phylogeny of Acacia subgenus Phyllodinaea (Mimosoideae: Leguminoseae) based on DNA sequences of the internal transcribed spacer region. Austral. Syst. Bot. 16 (1): 1926.Google Scholar
Murphy, D. J., Brown, G. K., Miller, J. & Ladiges, P. Y. (2010). Molecular phylogeny of Acacia Mill. (Mimosoideae: Leguminosae): evidence for major clades and informal classification. Taxon 59 (1): 719.Google Scholar
Ndlovu, J., Richardson, D. M., Wilson, J. R. U., O'Leary, M. & Le Roux, J. J. (2013). Elucidating the native sources of an invasive tree species, Acacia pycnantha, reveals unexpected native range diversity and structure. Ann. Bot. 111 (5): 895904.Google Scholar
Nevill, P. G., Wallace, M. J., Miller, J. T. & Krauss, S. L. (2013). DNA barcoding for conservation, seed banking and ecological restoration of Acacia in the Midwest of Western Australia. Molec. Ecol. Resources 13 (6): 10331042.Google Scholar
Newmaster, S. G. & Ragupathy, S. (2009). Testing plant barcoding in a sister species complex of pantropical Acacia (Mimosoideae, Fabaceae). Molec. Ecol. Resources 9 (1): 172180.Google Scholar
Odee, D. W., Telford, A., Wilson, J., Gaye, A. & Cavers, S. (2012). Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109: 372382.Google Scholar
Orchard, A. E. & Maslin, B. R. (2003). Proposal to conserve the name Acacia (Leguminosae: Mimosoideae) with a conserved type. Taxon 52 (2): 362363.Google Scholar
Orchard, A. E. & Maslin, B. R. (2005). The case for conserving Acacia with a new type. Taxon 54 (2): 509512.Google Scholar
Perez, S. I., Tejedor, M. F., Novo, N. M. & Aristide, L. (2013). Divergence times and the evolutionary radiation of New World monkeys (Platyrrhini, Primates): an analysis of fossil and molecular data. PLoS One 2013; 8 (6): e68029.Google Scholar
Plant List (no date). Online. Available: http://www.theplantlist.org/tpl1.1/record/kew-2613251 (accessed 16 May 2014).Google Scholar
Rahman, M. H. & Rajora, O. P. (2002). Microsatellite DNA fingerprinting, differentiation, and genetic relationships of clones, cultivars, and varieties of six poplar species from three sections of the genus Populus . Genome 45 (6): 10831094.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 (3): 539542.Google Scholar
Rull, V. (2008). Speciation timing and neotropical biodiversity: the Tertiary–Quaternary debate in the light of molecular phylogenetic evidence. Molec. Ecol. 17 (11): 27222729.Google Scholar
Sanderson, M. J., Thorne, J. L., Wikström, N. & Bremer, K. (2004). Molecular evidence on plant divergence times. Amer. J. Bot. 91 (10): 16561665.Google Scholar
Schwartz, O. (1939). Flora des tropischen Arabien. Mitt. Inst. Allg. Bot. Hamburg 10: 1394.Google Scholar
Seigler, D. S., Ebinger, J. E. & Miller, J. T. (2006). Mariosousa, a new segregate genus from Acacia s.l. (Fabaceae, Mimosoideae) from Central and North America. Novon 16 (3): 413420.CrossRefGoogle Scholar
Shuaib, L. (1995). Wildflowers of Kuwait, p. 88. London: Stacey International.Google Scholar
Sites, J. W. J. & Marshall, J. C. (2004). Operational criteria for delimiting species. Annual Rev. Ecol. Evol. Syst. 35: 199227.Google Scholar
Smith, G. F., van Wyk, A. E., Luckow, M. & Schrire, B. (2006). Conserving Acacia Mill. with a conserved type: what happened in Vienna? Taxon 55 (1): 223225.Google Scholar
Sprent, J. I. (2007). Evolving ideas of evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174 (1): 1125.Google Scholar
Taberlet, P., Gielly, L., Patou, G. & Bouvet, J. (1991). Universal primers for amplification of three noncoding regions of chloroplast DNA. Pl. Molec. Biol. 17 (5): 11051109.Google Scholar
Tamura, K., Battistuzzi, F. U., Billing-Ross, P., Murillo, O., Filipski, A. & Kumar, S. (2012). Estimating divergence times in large molecular phylogenies. Proc. Natl Acad. Sci. U.S.A. 109 (47): 19,33319,338.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis, version 6.0. Molec. Biol. Evol. 30 (12): 27252729.Google Scholar
Townsend, C. C. (1967). Contributions to the Flora of Iraq: V. Notes on the Leguminosales. Kew Bull. 21: 435458.Google Scholar
Walker, J. & Simpson, J. (2004). An alternative view to ICBN Proposal 1584 to conserve the name Acacia (Leguminosae: Mimosoideae) with a conserved type. Newslett. Austral. Syst. Bot. Soc. 117: 1721.Google Scholar
Wyler, S. C. & Naciri, Y. (2016). Evolutionary histories determine DNA barcoding success in vascular plants: seven case studies using intraspecific broad sampling of closely related species. B. M. C. Evol. Biol. 16: 103.Google Scholar
Zietkiewicz, E., Rafalski, A. & Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction. Genomics 20: 176183.Google Scholar