Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-08T08:03:32.790Z Has data issue: false hasContentIssue false

A POPULATION OF LYCHNOPHORA ERICOIDES MART. (ARNICA) (ASTERACEAE) IS PRONE TO EXTINCTION IN A SAVANNA OF CENTRAL BRAZIL

Published online by Cambridge University Press:  25 July 2017

S. Ribeiro-Silva*
Affiliation:
Centro Nacional de Avaliação da Biodiversidade e de Pesquisa e Conservação do Cerrado, Instituto Chico Mendes; Prédio do Centro de Excelência do Cerrado; Jardim Botânico de Brasília, SMDB Conjuncto 12, Lago Sul, Brasília DF, Brazil.
M. B. Medeiros
Affiliation:
Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Avenida W5 Norte, DF 70770-917, Brasília, Brazil.
V. V. F. Lima
Affiliation:
Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Avenida W5 Norte, DF 70770-917, Brasília, Brazil.
A. B. Giroldo
Affiliation:
Universidade de Brasília, Departamento de Ecologia, Campus Universitário Darcy Ribeiro, Brasília, DF 70910-900, Brazil.
S. E. de Noronha
Affiliation:
Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Avenida W5 Norte, DF 70770-917, Brasília, Brazil.
F. O. Resende
Affiliation:
Centro Nacional de Avaliação da Biodiversidade e de Pesquisa e Conservação do Cerrado, Instituto Chico Mendes; Prédio do Centro de Excelência do Cerrado; Jardim Botânico de Brasília, SMDB Conjuncto 12, Lago Sul, Brasília DF, Brazil.
*
E-mail for correspondence: [email protected]
Get access

Abstract

Lychnophora ericoides Mart. (Asteraceae), popularly known as arnica, is a plant species subjected to non-timber forest products extraction. Evidence is mounting that some local populations are on the brink of extinction. However, demographic studies of Lychnophora ericoides are rare. Therefore, as a step towards conservation, a remnant population of Lychnophora ericoides located in an area of the Cerrado (Brazilian Savanna) in Central Brazil was evaluated from 2010 through 2014. Disturbances such as wildfires and harvesting of Lychnophora ericoides were randomly distributed throughout the study period in this area. Four annual transition matrices (A1, A2, A3 and A4) were constructed, based on life stages. The main results of studies of population dynamics for this species are as follows: 1) population growth rates (λ) with 95% confidence intervals indicated a declining population in all periods from 2010 to 2014; 2) stochastic population growth rate considering the four matrices was < 1 with value λ = 0.358 and CI95% = (0.354–0.362); 3) survival with permanence at the same stage of reproductive adult individuals (46–80%) contributed most to population growth rate, based on elasticity analysis; 4) the population is much less likely to have increases in density, compared with reduction, for all intervals from 2010 to 2014, based on transient indices; 5) the low value of λ in the high-mortality year was caused by lower stasis of individuals in the seedling or sapling and juvenile life stages, as well as fecundity in the 2011–2012 and 2012–2013 intervals, as shown by a life table response experiment; and 6) 100% of the population will probably be extinct within 15 years. There is evidence that the main cause for local extinction of Lychnophora ericoides could be the effects of frequent wildfires. Based on these results, it is suggested that the time has come for significant conservation efforts to rescue this population, including monitoring, protection and education as the first steps towards protection of this vulnerable plant species.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh (2017) 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, S. P., Proença, C. E. B, Sano, S. M. & Ribeiro, J. F. (1998). Cerrado: Espécies Vegetais Úteis. Planaltina: Embrapa–CPAC.Google Scholar
Avelino, A. S. (2005). Biologia reprodutiva de Lychnophora ericoides Mart. (Asteraceae: Vernonieae). Master's dissertation, Universidade de Brasília.Google Scholar
Baldauf, C., Corréa, C. E., Ferreira, R. C. & Santos, F. A. N. (2015). Assessing the effects of natural and anthropogenic drivers on the demography of Himatanthus drasticus (Apocynaceae): implications for sustainable management. Forest Ecol. Managem. 354: 177184.CrossRefGoogle Scholar
Benites, V. M. (2001). Caracterização de solos e de substâncias húmicas em áreas de vegetação rupestre de altitude. Doctoral thesis, Universidade Federal de Viçosa.Google Scholar
Benites, V. M., Schaefer, C. E. G. R., Simas, F. N. B. & Santos, H. G. (2007). Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Revista Bras. Bot. 30 (4): 569577.Google Scholar
Bernal, R. (1998). Demography of the vegetable ivory palm Phytelephas seemannii in Colombia, and the impact of seed harvest. J. Appl. Ecol. 35 (1): 6474.CrossRefGoogle Scholar
Bruna, E. M., Fiske, I. J. & Trager, M. D. (2009). Habitat fragmentation and plant populations: is what we know demographically irrelevant? J. Veg. Sci. 20 (3): 569576.Google Scholar
Caswell, H. (2001). Matrix Population Models: Construction, Analysis and Interpretation. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Collevatti, R. G., Rabelo, S. G, & Vieira, R. F. (2009). Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species. Ann. Bot. 104 (4): 655664.CrossRefGoogle ScholarPubMed
Dietz, T., Ostrom, E. & Stern, P. C. (2003). The struggle to govern the commons. Science 302 (5652): 19071912.Google Scholar
Esri (2008). ArcGIS 10.1. Redlands, California: Environmental Systems Resource Institute.Google Scholar
Franco, M. & Silvertown, J. (2004). A comparative demography of plants based upon elasticities of vital rates. Ecology 85 (20): 531538.Google Scholar
Gaoue, O. G. & Ticktin, T. (2010). Effects of harvest of nontimber forest products and ecological differences between sites on the demography of African mahogany. Conservation Biol. 24 (2): 605614.Google Scholar
Giroldo, A. B & Scariot, A. (2015). Land use and management affects the demography and conservation of an intensively harvested Cerrado fruit tree species. Biol. Conservation 191: 150158.Google Scholar
Gottsberger, G. & Silberbauer-Gottsberger, I. (2006). Life in the Cerrado, a South American Tropical Seasonal Ecosystem: Origin, Structure, Dynamics and Plant Use. London: Springer-Verlag.Google Scholar
Holm, J. A., Miller, C. J. & Cropper, W. P. (2008). Population dynamics of the dioeceus Amazonian palm Mauritia flexuosa: simulation analysis for sustainable harvesting. Biotropica 40 (5): 550558.Google Scholar
Instituto Nacional de Meteorologia (continuously updated). Inmet database. Online. Available: http://www.inmet.gov.br/portal/ Google Scholar
Kroon, H., Groenendael, J. & Eherlen, J. (2000). Elasticities: a review of methods and model limitations. Ecology 81 (3): 607618.Google Scholar
Lefkovitch, L. T. (1965). The study of population growth in organisms grouped by stages. Biometrics 21 (1): 118.Google Scholar
Medeiros, M. B. & Miranda, H. S. (2005). Mortalidade pós–fogo em espécies lenhosas de campo sujo submetido a três queimadas prescritas anuais. Acta Bot. Brasil. 19 (3): 493500.Google Scholar
Miranda, H. S., Bustamante, M. C. M. & Miranda, A. C. (2002). The fire factor. In: Oliveira, P. S. & Marquis, R. J. (eds) The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, pp. 5168. New York, New York: Columbia University Press.Google Scholar
Morris, W. F. & Doak, D. F. (2002). Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Portela, R. C. Q., Bruna, E. M. & Santos, F. A. M. (2010). Demography of palm species in Brazil's Atlantic Forest: a comparison of harvested and unharvested species using matrix models. Biodivers. & Conservation 19 (8): 23892403.CrossRefGoogle Scholar
R Development Core Team (2015). R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Raventós, J., Gonzalez, E., Mujica, E. & Bonet, A. (2015). Transient population dynamics of two epiphytic orchid species after Hurricane Ivan: implications for management. Biotropica 47 (4): 441448.Google Scholar
Ribeiro, J. F. & Walter, B. M. T. (2008). As principais fitofisionomias do Bioma Cerrado. In: Sano, S. M., Almeida, S. P. & Ribeiro, J. F. (eds) Cerrado: Ecologia e Flora, pp. 153212. Brasília: Embrapa Cerrados and Embrapa Informação Tecnológica.Google Scholar
Sampaio, M. & Scariot, A. (2010). Effects of stochastic events on population maintenance of an understorey palm species (Geonoma schottiana) in riparian tropical forest. J. Trop. Ecol. 26 (2): 151161.Google Scholar
Schmidt, I. B., Mandle, L., Ticktin, T. & Gaoue, O. G. (2011). What do matrix population models reveal about sustainability of non-timber forest product harvest? J. Appl. Ecol. 48 (4): 815826.Google Scholar
Semir, J., Rezende, A. R., Monge, M. & Lopes, N. P. (2011). As Arnicas Endêmicas das Serras do Brasil – Uma Visão Sobre a Biologia e a Química das Espécies de Lychnophora (Asteraceae). Ouro Preto: Universidade Federal de Ouro Preto.Google Scholar
Silva, D. (2005). Estrutura populacional, fenologia, crescimento e efeito de poda em Lychnophora ericoides Mart. (Asteraceae). M.Sc. dissertation, Universidade de Brasília.Google Scholar
Silva, F. A. M., Assad, E. D. & Evangelista, B. A. (2008). Caracterização climática do bioma Cerrado. In: Sano, S. M., Almeida, S. P. & Ribeiro, J. F. (eds) Cerrado: Ecologia e Flora, pp. 7088. Brasília: Embrapa Cerrados and Embrapa Informação Tecnológica.Google Scholar
Stanley, D., Voeks, R. & Short, L. (2012). Is non-timber forest product harvest sustainable in the less developed world? A systematic review of the recent economic and ecological literature. Ethnobiol. Conserv. 1 (9): 139.Google Scholar
Stott, I., Townley, S. & Hodgson, D. J. (2011). A framework for studying transient dynamics of population projection matrix models. Ecol. Letters 14 (9): 959970.Google Scholar
Stott, I., Townley, S. & Hodgson, D. J. (2012). popdemo: an R package for population demography using projection matrix analysis. Methods Ecol. Evol. 3 (5): 797802.Google Scholar
Stubben, C. & Milligan, B. (2007). Estimating and analyzing demographic models using the popbio package in R. J. Statist. Softw. 22 (11): 127.Google Scholar
Ticktin, T. (2004). The ecological implications of harvesting non-timber forest products. J. Appl. Ecol. 41 (1): 1121.Google Scholar
Ticktin, T., Nantel, P., Ramirez, F. & Johns, T. (2002). Effects of variation on harvest limits for nontimber forest species in Mexico. Conservation Biol. 16 (3): 691705.Google Scholar
Ticktin, T., Ganesan, R., Paramesha, M. & Setti, M. (2012). Disentangling the effects of multiple anthropogenic drivers on the decline of two tropical dry forest trees. J. Appl. Ecol. 49 (4): 774784.Google Scholar
Tremblay, R. L., Raventós, J. & Ackerman, J. D. (2015). When stable-stage equilibrium is unlikely: integrating transient population dynamics improves asymptotic methods. Ann. Bot. 116 (3): 381390.Google Scholar
United States Geological Service (2015). EarthExplorer. Online. Available: http://earthexplorer.usgs.gov Google Scholar
Vasquez, R. & Gentry, A. H. (1989). Use and misuse of forest-harvested fruits in the Iquitos area. Conservation Biol. 3 (4): 350361.Google Scholar
Zuidema, P. A. & Boot, R. G. (2002). Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon: impact of need extraction on recruitment and population dynamics. J. Trop. Ecol. 18 (1): 131.Google Scholar