Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T13:12:39.343Z Has data issue: false hasContentIssue false

Forest structure, floristic composition and soils of an Amazonian monodominant forest on maracá Island, Roraima, Brazil

Published online by Cambridge University Press:  26 April 2010

Get access

Abstract

Maracá is a riverine island located in the Rio Uraricoera in Roraima State (Brazil) and has an area of about 100,000ha. A forest type dominated by Peltogyne gracilipes Ducke (Caesalpiniaceae) occurs on Maracá Island on a range of soil types. This study compares the structure, floristic composition and soils of the Peltogyne forest with the most widespread lowland forest type on Maracá. Three 0.25ha plots were set up in each of three forest types: Peltogyne-rich forest (PRF), Peltogyne-pooi forest (PPF) and forest without Peltogyne (FWP). Within each plot all trees (≤ 10cm dbh) were recorded. Seedlings and saplings were sampled in subplots of 2m × 1m (seedlings) and 4m × 4m (saplings). In the PPF and FWP, Sapotaceae were the most important family with the highest relative dominance and relative density values. Caesalpiniaceae showed high values in the PRF and PPF. Licania kunthiana, Pradosia surinamensis and Simarouba amara occurred in the canopy layer in all the forest types. Peltogyne dominated the canopy in the PRF and comprised 20% of stems and 53% of the total basal area of all trees ≥ 10cm dbh, and 91% of the stems and 97% of the total basal area of individuals ≥ 50cm dbh. In PPF, Lecythis corrugata and Tetragastris panamensis were the most abundant species, followed by Peltogyne. In the FWP the most abundant trees (≥ 10cm dbh) were Licania kunthiana and Pradosia surinamensis. In all forest types, the soils were sandy and acid with low concentrations of extractable phosphorus and exchangeable cations, but the soils under PRF were notably richer in magnesium.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, I. J. (1989). Systematics and ecology of ectomycorrhizal legumes. In: Stirton, C. H. & Zarucchi, J. L. (eds) Advances in Legume Biology. Monogr. Syst. Bot. Missouri Bot. Gard. 29: 607624.Google Scholar
Allen, S. E. (ed.) (1989). Chemical Analysis of Ecological Materials. Ed. 2. London: Blackwell Scientific Publications.Google Scholar
Almeida, S., Lisboa, P. L. & Silva, A. S. (1994). Diversidade florística de uma comunidade arbórea na Estação Científica “Ferreira Penna” em Caxiuanã (Pará). Bol. Mus. Paraense Emílio Goeldi N.S. Botânica (in press).Google Scholar
Balslev, H., Luteyn, J., Ollgaard, B. & Holm-Nielsen, L. B. (1987). Composition and structure of adjacent unflooded and floodplain forest in Amazonian Ecuador. Opera Bot. 92: 3757.Google Scholar
Beard, J. C. (1944). Climax vegetation in tropical America. Ecology 25: 127158.CrossRefGoogle Scholar
Beard, J. C. (1946). The Mora forest of Trinidad. British West Indies. J. Ecol. 33: 173192.Google Scholar
Begon, M., Harper, J. L. & Townsend, C. R. (1990). Ecology. Individuals, Populations and Communities. Ed. 2. Oxford: Blackwell Scientific Publications.Google Scholar
Black, G. A., Dobzhansky, T. H. & Pavan, C. (1950). Some attempts to estimate species diversity and population density of trees in Amazonian forests. Bot. Gaz. 111:413425.Google Scholar
Boom, B. M. (1986). A forest inventory in Amazonian Bolivia. Biotropica 18: 287294.Google Scholar
Brower, J. E. & Zar, J. H. (1977). Field and Laboratory Methods for General Ecology. Iowa: W. C. Brown Company Publishers.Google Scholar
Buschbacher, R. J. (1984). Changes in productivity and nutrient cycling following conversion of Amazon rainforest to pasture. D.Phil, thesis, University of Georgia, Athens.Google Scholar
Campbell, D. G. (1994). Scale and patterns of community structure in Amazonian forests. In: Edwards, P. J, May, R. M. & Webb, N. R. (eds) Large-scale Ecology and Conservation Biology, pp. 179198. Oxford: Blackwell Scientific Publications.Google Scholar
Campbell, D. G., Daly, D. C, Prance, G. T. & Maciel, U. N. (1986). Quantitative ecological inventory of terra firme forest on the Rio Xingu, Brazilian Amazon. Brittonia 38: 369393.CrossRefGoogle Scholar
Campbell, E. J. F. & Newbery, D. McC. (1993). Ecological relationships between lianas and trees in lowland rain forest in Sabah, east Malaysia. J. Trop. Ecol. 9: 469490.Google Scholar
Cochrane, T. T., SÁNchez, L. G., Azevedo, L. G., Porras, J. A. & Garver, C. L. (1985). Land in Tropical America. A Guide to Climate, Landscapes, and Soils for Agronomists in Amazonia, the Andean Piedmont, Central Brazil and Orinoco. CIAT, EMBRAPA-CPAC. Cali.Google Scholar
Connell, J. H. & Lowman, M. D. (1989). Low-diversity tropical rain forests: some possible mechanisms for their existence. Amer. Naturalist 134: 88119.Google Scholar
Cottam, G. & Curtis, J. T. (1956). The use of distance measure in phytosociological sampling. Ecology 37: 451460.Google Scholar
Davis, T. A. W & Richards, P. W. (1934). The vegetation of Moraballi Creek, British Guiana. Part II. J. Ecol. 22: 106.CrossRefGoogle Scholar
Dawkins, H. C. (1959). The volume increment of natural tropical high forest and limitations on its improvement. Empire Forest. Rev. 33: 175180.Google Scholar
Edwards, I. D., Proctor, J. & Riswan, S. (1993). Rain forest types in the Manusela National Park. In: Edwards, I. D., Macdonald, A. A. & Proctor, J. (eds) Natural History of Seram, pp. 6374. Andover, England: Intercept.Google Scholar
Eggeling, W. J. (1947). Observations on the ecology of Budongo rain forest, Uganda. J. Ecol. 34: 2087.Google Scholar
Eidt, R. C. (1968). The climatology of South America. In: Fittkau, E. J., Illies, J., Klinge, H., Schwabe, G. H. & Sioli, H. (eds) Biogeography and Ecology in South America, Vol. 1, pp. 5481. The Hague.Google Scholar
, Embrapa (1979). Manual de Métodos de Análises de Solos. Serviço Nacional de Levantamento e Conservação de Solos, Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Rio de Janeiro.Google Scholar
Felfili, J. M. (1994). Floristic composition and phytosociology of the gallery forest alongside the Gama stream in Brasilia, DF, Brazil. Revista Brasil. Bot. 17: 112.Google Scholar
Furley, P., Dargie, T. C. & Place, C. J. (1994). Remote sensing and the establishment of a geographical information system resource management on and around Maracá Island. In: Hemming, J. (ed.) The Rainforest Edge. Plant and Soil Ecology of Maracá Island, Brazil, pp. 115133. Manchester: Manchester University Press.Google Scholar
Furley, P. & Ratter, J. A. (1990). I. Pedological and botanical variations across the forest-savanna transition on Maraca Island. Geogr. J. 156: 251266.CrossRefGoogle Scholar
Furley, P., Ratter, J. A. & Gifford, D. R. (1988). Observations on the vegetation of eastern Mato Grosso, Brazil. III. The woody vegetation and soils of the Morro de Fumaça, Torixoreu. Proc. Royal Soc. London, Ser. B 235: 259280.Google Scholar
Gartlan, J. S., Newbery, D. M c C , Thomas, D. W. & Waterman, P. G. (1986). The influence of topography and soil phosphorus on the vegetation of Korup forest Reserve, Cameroun. Vegetatio 65: 131148.Google Scholar
Gentry, A. H. (1987). An overview of Neotropical phytogeographic patterns with an emphasis on Amazonia. In: Anais lo. Simpósio do Trópico Úmido, vol II. Flora e floresta. Belém, Brazil: EMBRAPA/CPATU.Google Scholar
Gentry, A. H. (1988). Tree species richness of upper Amazonian forests. Proc. Natl Acad. America 85: 156159.Google Scholar
Gerard, P. (1960). Etude écologique de la forêt dense à Gilbertiodendron dewevrei dans la région de L'Uele. INEAC (Inst. Natl. Étude Agron. Congo) Ser. Sci. no. 87, Brussels.Google Scholar
Gibbs, P. E., Leitão Filho, H. F. & Abbott, R. J. (1980). Application of the point-centred quarter method in a floristic survey of an area of gallery forest at Mogi-Guacu, SP. Revista Brasil. Bot. 3: 1722.Google Scholar
Gine, M. F., BERGAMIN Filho, H., Zagatto, E. A. G & Reis, B. F. (1980). Simultaneous determination of nitrate and nitrite by flow analysis. Analytica Chimica Ada 114: 192197.Google Scholar
Greig-Smith, P. (1983). Quantitative Plant Ecology. Ed. 3. Oxford: Blackwell Scientific Publications.Google Scholar
Hamilton-Rice, A. (1928). The Rio Branco, Uraricuera and Parima. Geogr. J. 71: 113143,209223,345357.Google Scholar
Hart, T. B., Hart, J. A. & Murphy, P. G. (1989). Monodominant and species-rich forests of the humid tropics: causes for their co-occurrence. Amer. Naturalist 133: 613633.Google Scholar
Henriksen, S. & Selmer-Olsen, A. R. (1970). Automatic methods for determining nitrite and nitrate in water and soil extracts. Analyst 95: 514518.Google Scholar
Kahn, F. & Granville, J. J. (1992). Palms in Forest Ecosystems of Amazonia. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kershaw, K. A & Looney, J. H. H (1985). Quantitative and Dynamic Plant Ecology. Ed. 3. London: Arnold.Google Scholar
Korning, J. & Balslev, H. (1994). Growth rates and mortality patterns of tropical lowland tree species and the relation to forest structure in Amazonian Ecaudor. J. Trop. Ecol. 10: 151166.Google Scholar
Lamprecht, H. (1972). Einige Strucktur merkmale naturlicher Tropenwaldtypen und ihre waldbauliche Bedeutung. Forstwiss. Zentralbl. 91: 270277.Google Scholar
Marshall, R. C. (1934). The physiography and vegetation of Trinidad and Tobago. A study in plant ecology. Oxford Forest. Mem. 17: 956.Google Scholar
Martijena, N. E. & Bullock, S. H. (1994). Monospecific dominance of a tropical deciduous forest in Mexico. J. Biogeogr. 21: 6374.Google Scholar
Milliken, W. & Ratter, J. A. (1989). The Vegetation of the Ilha de Maraca. First report of the vegetation survey of the Maraca Rainforest Project (INPA/SEMA/RGS). Royal Botanic Garden Edinburgh.Google Scholar
Mori, S. A., Boom, B. M., Carvalho, A. M. & Santos, T. S. (1983). Southern Banian moist forests. Bot. Rev. 49: 155232.Google Scholar
Myers, J. G. (1936). Savannah and forest vegetation of the interior Guiana plateau. J. Ecol. 24: 162184.Google Scholar
Nascimento, M. T. (1994). A monodominant rainforest on Maraca Island, Roraima, Brazil: Forest structure and dynamics. PhD thesis, University of Stirling, Stirling, Scotland.Google Scholar
Newbery, D. McC, Campbell, E. J. F, Lee, Y. F., Ridsdale, C. E. & Still, M. J. (1992). Primary lowland dipterocarp forest at Danum Valley, Sabah, Malaysia: structure, relative abundance and family composition. Philos. Trans. Ser. B 335: 341356.Google Scholar
Nimer, E. (1991). Clima. In: Geografia do Brasil. Regiao Norte, vol. 3, pp. 6171. Rio de Janeiro: IBGE.Google Scholar
Oliveira-Filho, A. T., Shepherd, J., Martins, F. R. & Stubblebine, W. H. (1989). Environmental factors affecting physiognomic and floristic variation in an area of cerrado in central Brazil. J. Trop. Ecol. 5: 413431.Google Scholar
Peet, R. K. (1974). The measurement of species diversity. Annual Rev. Ecol. Syst. 5: 285307.CrossRefGoogle Scholar
Pielou, E. C. (1984). The Interpretation of Ecological Data: a Primer on Classification and Ordination. Chichester: Wiley.Google Scholar
Pires, J. M. & Prance, G. T. (1985). The vegetation types of the Brazilian Amazon. In: Prance, G. T. & Lovejoy, T. E. (eds) Key Environments: Amazonia, pp. 109145. Oxford: Pergamon Press.Google Scholar
Prance, G. T. (1990). The floristic composition of the forests of central Amazonian Brazil. In: Gentry, A. H. (ed.) Four Neotropical Rainforests, pp. 112140. New Haven: Yale University Press.Google Scholar
Prance, G. T., Rodrigues, W. A. & Silva, M. F. (1976). Inventario florestal de um hectare de mata de terra firme km 30 da estrada Manaus-Itacoatiara. Ada Amazon. 6: 935.CrossRefGoogle Scholar
Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. (1983). Ecological studies in four contrasting lowland rain forest in Gunung Mulu National Park, Sarawak I. Forest environment, structure and floristics. J. Ecol. 71: 237260.CrossRefGoogle Scholar
Putz, F. E. & Chai, P. (1987). Ecological studies of lianas in Lambir National Park, Sarawak, Malaysia. J. Ecol. 75: 523531.CrossRefGoogle Scholar
Putz, F. E., Lee, H. S. & Goh, R. (1985). Effects of post-felling silvicultural treatments on woody vines in Sarawak. Malaysian Forester 47: 214226.Google Scholar
, Radambrasil (1975). Levantamento de recursos naturals, vol. 8, folha NA.20 Boa Vista, e parte das folhas NA.21, NB.20 e NB. 21. Rio de Janeiro: Ministério das Minas Energia.Google Scholar
Rai, S. N. & Proctor, J. (1986). Ecological studies on four rain forests in Karnataka, India. I. Environment, structure, floristic and biomass. J. Ecol. 74: 439454.CrossRefGoogle Scholar
Rankin-De-Merona, J. M., Prance, G. T., Hutchings, R., Silva, M. F., Rodrigues, W. A. & Uehling, M. E. (1992). Preliminary results of a large-scale tree inventory of upland rain forest in the central Amazon. Acta Amazon. 22: 493534.Google Scholar
Ratter, J. A., Askew, G. P., Montgomery, R. F. & Gifford, D. R. (1978). Observations on the vegetation of the northeastern Mato Grosso. II. Forests and soils of the Rio Suiá-Missu area. Proc. Roy. Soc. London, Ser. B 203: 191208.Google Scholar
Ratter, J. A., Richards, P. W., Argent, G. & Gifford, D. R. (1973). Observations on the vegetation of the northeastern Mato Grosso. I. Philos. Trans. Ser. B 266: 449492.Google Scholar
Richards, P. (1952). The Tropical Rain Forest. Cambridge: Cambridge University Press.Google Scholar
Robertson, G. P. (1984). Nitrification and nitrogen mineralization in a lowland rainforest succession in Costa Rica, Central America. Oecologia 61: 99104.Google Scholar
Robison, D. M. & Nortcliff, S. (1991). Os solos da reserva de Maracá, Roraima: segunda aproximação. Acta Amazon. 21: 409424.Google Scholar
Robison, D. M. & Nortcliff, S. (1994). A tentative interpretation of the Quaternary geomorphology of Maracá Island, based on an analysis of soils developed on residua and drift deposits. In: Hemming, J. H. (ed.) The Rainforest Edge. Plant and Soil Ecology of Maracá Island, Brazil, pp. 158172. Manchester: Manchester University Press.Google Scholar
Sanford, R., Saldarriaga, J., Clark, K. P., Uhl, C. & Herrera, R. (1985). Amazon rainforest fires. Science (Washington D.C.) 227: 5355.Google Scholar
Silva, M. (1976). Revisão taxonômica do gênero Peltogyne Vog. (Leg. Caesalp.). Acta Amazon. 6: 161.Google Scholar
Swaine, M. D. & Hall, J. B. (1981). The monospecific tropical forest of the Ghanaian endemic tree, Talbotiella gentii. In: Synge, H. (ed.) The Biological Aspects of Rare Plant Conservation: Proceedings of an International Conference. King's College, Cambridge, July 1419, 1980. BSBI (Bot. Soc. Br. Isles) Conf. Rep. 17, pp. 355363. Chichester: Wiley.Google Scholar
Swamy, H. R. & Proctor, J. (1995). Rain forests and their soils in the Sringeri area of the western Ghats. Global Ecol. Biodiv. Lett. 4: 140154.Google Scholar
Takeuchi, M. (1961). The structure of the Amazonian vegetation. II. Tropical rain forest. Journ. Fac. Sci. Univ. Tokyo, III 8: 126.Google Scholar
Taylor, L. R. (1978). Bates, Williams, Hutchinson - variety of diversities. In: Mound, L. A. & Warloff, N. (eds) Diversity of insect faunas: 9th Symposium of Royal Entomological Society, pp. 118. Oxford: Blackwell.Google Scholar
Thompson, J., Proctor, J. & Scott, D. A. (1994). A semi-evergreen forest on Maracá Island. I. Physical environment, forest structure and floristics. In: Hemming, J. H. (ed.) The Rainforest Edge. Plant and Soil Ecology of Maracá Island, Brazil, pp. 1929. Manchester: Manchester University Press.Google Scholar
Thompson, J., Proctor, J., Viana, V., Milliken, W., Ratter, J. A. and Scott, D. A. (1992a). Ecological studies on a lowland evergreen rain forest on Maraca Island, Roraima, Brazil. I. Physical environment, forest structure and leaf chemistry. J. Ecol. 80: 689703.Google Scholar
Thompson, J., Proctor, J., Viana, V., Ratter, J. A. & Scott, D. A. (1992b). The forest-savanna boundary on Maraca Island, Roraima, Brazil: an investigation of two contrasting transects. In: Furley, P. A., Proctor, J. & Ratter, J. A. (eds) Dynamics of Forest-Savanna Boundaries, pp. 367392. London: Chapman & Hall.Google Scholar
Uhl, C. (1982). Tree dynamics in a species rich tierra firme forest in Amazonia, Venezuela. Ada Ci. Venez. 33: 7277.Google Scholar
Uhl, C. & Murphy, P. G. (1981). Composition, structure and regeneration of a tierra firme forest in the Amazon Basin of Venezuela. Trop. Ecol. 22: 219237.Google Scholar
Whitmore, T. C. (1984). Tropical Rain Forests of the Far East. Ed. 2. Oxford: Clarendon Press.Google Scholar
Zar, J. H. (1984). Biostatistical Analysis. Ed. 2. New Jersey: Prentice Hall International.Google Scholar