Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T20:04:10.808Z Has data issue: false hasContentIssue false

CONTRIBUTIONS TO THE KNOWLEDGE OF CAMBODIAN CYPERACEAE

Published online by Cambridge University Press:  18 March 2019

K. Tremetsberger*
Affiliation:
Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria. E-mail for correspondence: [email protected]
S. Hameister
Affiliation:
Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria. E-mail for correspondence: [email protected]
D. A. Simpson
Affiliation:
Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
K.-G. Bernhardt
Affiliation:
Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria. E-mail for correspondence: [email protected]
Get access

Abstract

To date, there are very few sequence data for Cyperaceae from mainland Southeast Asia. The aim of the present study was to contribute nuclear ribosomal internal transcribed spacer (ITS) sequences of selected species of Cambodian Cyperaceae to the overall phylogeny of the family. We generated ITS sequences of 38 accessions representing 26 species from Cambodia and used these sequences for phylogenetic analysis together with similar sequences from the National Center for Biotechnology Information GenBank. Our results corroborate recent phylogenetic work in the family and largely confirm established tribal relationships. The backbone of the phylogenetic tree of species-rich genera that have undergone rapid radiations is often weakly resolved (e.g. in Fimbristylis and in the C4 clade of Cyperus). Cryptic variation was revealed in the taxonomically difficult group of Fimbristylis dichotoma, with samples of this taxon appearing in two distinct clades within Fimbristylis. Further addition of geographically spread accessions of taxa will improve our understanding of the complex biogeographical history of the genera in the family. Eleocharis koyamae Tremetsb. & D.A.Simpson is proposed as a new name for E. macrorrhiza T. Koyama.

Type
Articles
Copyright
© Trustees of the Royal Botanic Garden Edinburgh (2019) 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauters, K., Larridon, I., Reynders, M., Asselman, P., Vrijdaghs, A., Muasya, A. M., Simpson, D. A. & Goetghebeur, P. (2014). A new classification for Lipocarpha and Volkiella as infrageneric taxa of Cyperus s.l. (Cypereae, Cyperoideae, Cyperaceae): insights from species tree reconstruction supplemented with morphological and floral developmental data. Phytotaxa 166(1): 132.CrossRefGoogle Scholar
Bauters, K., Asselman, P., Simpson, D. A., Muasya, A. M., Goetghebeur, P. & Larridon, I. (2016). Phylogenetics, ancestral state reconstruction, and a new infrageneric classification of Scleria (Cyperaceae) based on three DNA markers. Taxon 65(3): 444466.CrossRefGoogle Scholar
Besnard, G., Muasya, A. M., Russier, F., Roalson, E. H., Salamin, N. & Christin, P.-A. (2009). Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Molec. Biol. Evol. 26(8): 19091919.CrossRefGoogle Scholar
Bruhl, J. J. (1995). Sedge genera of the world: relationships and a new classification of the Cyperaceae. Austral. Syst. Bot. 8(2): 125305.CrossRefGoogle Scholar
Bruhl, J. J. & Wilson, K. L. (2007). Towards a comprehensive survey of C3 and C4 photosynthetic pathways in Cyperaceae. Aliso 23(1): 99148.CrossRefGoogle Scholar
Bryson, C. T. & Carter, R. (2008). The significance of Cyperaceae as weeds. In: Naczi, R. F. C. & Ford, B. A. (eds) Sedges: Uses, Diversity, and Systematics of the Cyperaceae. Monogr. Syst. Bot. Missouri Bot. Gard. 108: 15101.Google Scholar
Ghamkhar, K., Marchant, A. D., Wilson, K. L. & Bruhl, J. J. (2007). Phylogeny of Abildgaardieae (Cyperaceae) inferred from ITS and trnL-F data. Aliso 23(1): 149164.CrossRefGoogle Scholar
Global Carex Group. (2016). Megaphylogenetic specimen-level approaches to the Carex (Cyperaceae) phylogeny using ITS, ETS, and matK sequences: implications for classification. Syst. Bot. 41(3): 500518.CrossRefGoogle Scholar
Goetghebeur, P. (1998). Cyperaceae. In: Kubitzki, K. (ed.) The Families and Genera of Vascular Plants. Volume IV, Flowering Plants. Monocotyledons. Alismatanae and Commelinanae (except Gramineae), pp. 141190. Berlin: Springer.Google Scholar
González-Elizondo, M. S. & Peterson, P. M. (1997). A classification of and key to the supraspecific taxa in Eleocharis (Cyperaceae). Taxon 46(3): 433449.CrossRefGoogle Scholar
Govaerts, R., Koopman, J., Simpson, D., Goetghebeur, P., Wilson, K., Egorova, T. & Bruhl, J. (2018). World Checklist of Cyperaceae. Facilitated by the Royal Botanic Gardens, Kew. Online. Available: http://apps.kew.org/wcsp/ (retrieved 15 September 2018).Google Scholar
Harpke, D. & Peterson, A. (2008). 5.8S motifs for the identification of pseudogenic ITS regions. Botany 86(3): 300305.CrossRefGoogle Scholar
Hinchliff, C. E. & Roalson, E. H. (2009). Stem architecture in Eleocharis subgenus Limnochloa (Cyperaceae): evidence of dynamic morphological evolution in a group of pantropical sedges. Amer. J. Bot. 96(8): 14871499.CrossRefGoogle Scholar
Hirahara, T., Katsuyama, T. & Hoshino, T. (2007). Suprageneric phylogeny of Japanese Cyperaceae based on DNA sequences from chloroplast ndhF and 5.8S nuclear ribosomal DNA. Acta Phytotax. Geobot. 58(2–3): 5768.Google Scholar
Hsiao, C., Chatterton, N. J., Asay, K. H. & Jensen, K. B. (1994). Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome 37(1): 112120.CrossRefGoogle ScholarPubMed
Jobes, D. V. & Thien, L. B. (1997). A conserved motif in the 5.8S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) sequences. Pl. Molec. Biol. Reporter 15(4): 326334.CrossRefGoogle Scholar
Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F. & Donoghue, M. J. (2016). Plant Systematics: a Phylogenetic Approach, 4th edition. Sunderland, Massachusetts: Sinauer.Google Scholar
Jung, J. & Choi, H.-K. (2011). Taxonomic study of Korean Scirpus L. s.l. (Cyperaceae) II: pattern of phenotypic evolution inferred from molecular phylogeny. J. Pl. Biol. 54(6): 409424.CrossRefGoogle Scholar
Jung, J. & Choi, H.-K. (2013). Recognition of two major clades and early diverged groups within the subfamily Cyperoideae (Cyperaceae) including Korean sedges. J. Pl. Res. 126(3): 335349.CrossRefGoogle ScholarPubMed
Jung, J., Ryu, Y. & Choi, H.-K. (2016). Molecular phylogeny and divergence of photosynthetic pathways of Korean Cypereae (Cyperaceae). Korean J. Pl. Taxon. 46(3): 314325.CrossRefGoogle Scholar
Katoh, K. & Toh, H. (2008). Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. B. M. C. Bioinf. 9: 212.CrossRefGoogle ScholarPubMed
Katoh, K., Rozewicki, J. & Yamada, K. D. (2017). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinf. bbx108.CrossRefGoogle ScholarPubMed
Keller, A., Schleicher, T., Schultz, J., Müller, T., Dandekar, T. & Wolf, M. (2009). 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 430(1–2): 5057.CrossRefGoogle ScholarPubMed
Kern, J. H. (1974). Cyperaceae. In: van Steenis, C. G. G. J. (ed.) Flora Malesiana, Series 1: Spermatophyta (Seed Plants), vol. 7, part 3, pp. 435753. Leiden: Noordhoff.Google Scholar
Koyama, T. (1979). Studies in the Cyperaceae of Thailand II. Miscellaneous taxa of Fimbristylideae, Rhynchosporeae, Scirpeae and Sclerieae 1. Brittonia 31(2): 284293.Google Scholar
Larridon, I., Reynders, M., Huygh, W., Bauters, K., Van de Putte, K., Muasya, A. M., Boeckx, P., Simpson, D. A., Vrijdaghs, A. & Goetghebeur, P. (2011a). Affinities in C3 Cyperus lineages (Cyperaceae) revealed using molecular phylogenetic data and carbon isotope analysis. Bot. J. Linn. Soc. 167(1): 1946.CrossRefGoogle Scholar
Larridon, I., Reynders, M., Huygh, W., Bauters, K., Vrijdaghs, A., Leroux, O., Muasya, A. M., Simpson, D. A. & Goetghebeur, P. (2011b). Taxonomic changes in C3 Cyperus (Cyperaceae) supported by molecular data, morphology, embryography, ontogeny and anatomy. Pl. Ecol. Evol. 144(3): 327356.CrossRefGoogle Scholar
Larridon, I., Bauters, K., Reynders, M., Huygh, W., Muasya, A. M., Simpson, D. A. & Goetghebeur, P. (2013). Towards a new classification of the giant paraphyletic genus Cyperus (Cyperaceae): phylogenetic relationships and generic delimitation in C4 Cyperus. Bot. J. Linn. Soc. 172(1): 106126.Google Scholar
Lunkai, D., Songyun, L., Shuren, Z., Yancheng, T., Koyama, T., Tucker, G. C., Simpson, D. A., Noltie, H. J., Strong, M. T., Bruhl, J. J., Wilson, K. L. & Muasya, A. M. (2010). Cyperaceae. In: Wu, Z. Y., Raven, P. H., & Hong, D. Y. (eds) Flora of China, Volume 23 (Acoraceae through Cyperaceae), pp. 164461. Beijing: Science Press, and St Louis: Missouri Botanical Garden Press.Google Scholar
Muasya, A. M., Simpson, D. A., Verboom, G. A., Goetghebeur, P., Naczi, R. F. C., Chase, M. W. & Smets, E. (2009). Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. Bot. Rev. (Lancaster) 75(1): 221.CrossRefGoogle Scholar
Muasya, A. M., Viljoen, J.-A., Dludlu, M. N. & Demissew, S. (2014). Phylogenetic position of Cyperus clandestinus (Cypereae, Cyperaceae) clarified by morphological and molecular evidence. Nordic J. Bot. 32(1): 106114.CrossRefGoogle Scholar
Nieto Feliner, G. & RossellÓ, J. A. (2007). Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molec. Phylogen. Evol. 44(2): 911919.CrossRefGoogle ScholarPubMed
Piel, W. H., Chan, L., Dominus, M. J., Ruan, J., Vos, R. A. & Tannen, V. (2009). TreeBASE v. 2: a Database of Phylogenetic Knowledge. London: e-BioSphere.Google Scholar
Prasad, V. P. & Singh, N. P. (2002). Sedges of Karnataka (India) (Family Cyperaceae). Jodhpur: Scientific Publishers (India).Google Scholar
Rambaut, A. (2006–2014). FigTree. Tree Figure Drawing Tool, version 1.4.2. Online. Available: http://tree.bio.ed.ac.uk/software/figtree/.Google Scholar
Reid, C. S., Carter, R. & Urbatsch, L. E. (2014). Phylogenetic insights into New World Cyperus (Cyperaceae) using nuclear ITS sequences. Brittonia 66(3): 292305.CrossRefGoogle Scholar
Reutemann, A. G., Ardissone, R. E., López, M. G., Muchut, S. E., Boldrini, I., Vegetti, A. C. & Giussani, L. M. (2018). Phylogenetic relationships in Bulbostylis (Abildgaardieae: Cyperaceae) inferred from nuclear and plastid DNA sequence data. Syst. Biodivers. 16(5): 441452.CrossRefGoogle Scholar
Roalson, E. H. & Friar, E. A. (2000). Infrageneric classification of Eleocharis (Cyperaceae) revisited: evidence from the internal transcribed spacer (ITS) region of nuclear ribosomal DNA. Syst. Bot. 25(2): 323336.CrossRefGoogle Scholar
Rodríguez, F., Oliver, J. L., Marín, A. & Medina, J. R. (1990). The general stochastic model of nucleotide substitution. J. Theor. Biol. 142(4): 485501.CrossRefGoogle ScholarPubMed
Shiels, D. R., Hurlbut, D. L., Lichtenwald, S. K. & Monfils, A. K. (2014). Monophyly and phylogeny of Schoenoplectus and Schoenoplectiella (Cyperaceae): evidence from chloroplast and nuclear DNA sequences. Syst. Bot. 39(1): 132144.CrossRefGoogle Scholar
Simpson, D. A. & Koyama, T. (1998). Cyperaceae. In: Flora of Thailand, vol. 6(4), pp. 247485. Bangkok: The Forest Herbarium, Royal Forest Department.Google Scholar
Spalink, D., Drew, B. T., Pace, M. C., Zaborsky, J. G., Starr, J. R., Cameron, K. M., Givnish, T. J. & Sytsma, K. J. (2016). Biogeography of the cosmopolitan sedges (Cyperaceae) and the area-richness correlation in plants. J. Biogeogr. 43(10): 18931904.CrossRefGoogle Scholar
Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 13121313.CrossRefGoogle ScholarPubMed
Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T. W., McNeill, J., Monro, A. M., Prado, J., Price, M. J., & Smith, G. F. (eds) (2018). International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. doi: 10.12705/Code.2018.Google Scholar
Viljoen, J.-A., Muasya, A. M., Barrett, R. L., Bruhl, J. J., Gibbs, A. K., Slingsby, J. A., Wilson, K. L. & Verboom, G. A. (2013). Radiation and repeated transoceanic dispersal of Schoeneae (Cyperaceae) through the southern hemisphere. Amer. J. Bot. 100(12): 24942508.CrossRefGoogle ScholarPubMed
Vos, R. A., Balhoff, J. P., Caravas, J. A., Holder, M. T., Lapp, H., Maddison, W. P., Midford, P. E., Priyam, A., Sukumaran, J., Xia, X. & Stoltzfus, A. (2012) NeXML: rich, extensible, and verifiable representation of comparative data and metadata. Syst. Biol. 61(4): 675689.CrossRefGoogle ScholarPubMed
Wangwasit, K., Muasya, A. M., Chantaranothai, P. & Simpson, D. A. (2017). Taxonomy and phylogenetic position of Fimbristylis fusiformis, a new species of Cyperaceae from Thailand. Blumea 62(1): 4752.CrossRefGoogle Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., &White, T. J. (eds) PCR Protocols: a Guide to Methods and Applications, pp. 315322. San Diego, California: Academic Press.Google Scholar
Yano, O. & Hoshino, T. (2006). Phylogenetic relationships and chromosomal evolution of Japanese Fimbristylis (Cyperaceae) using nrDNA ITS and ETS 1f sequence data. Acta Phytotax. Geobot. 57(3): 205207.Google Scholar
Yano, O., Katsuyama, T., Tsubota, H. & Hoshino, T. (2004). Molecular phylogeny of Japanese Eleocharis (Cyperaceae) based on ITS sequence data, and chromosomal evolution. J. Pl. Res. 117(5): 409419.CrossRefGoogle ScholarPubMed
Yano, O., Ikeda, H., Watson, M. F., Rajbhandari, K. R., Jin, X.-F., Hoshino, T., Muasya, A. M. & Ohba, H. (2012). Phylogenetic position of the Himalayan genus Erioscirpus (Cyperaceae) inferred from DNA sequence data. Bot. J. Linn. Soc. 170(1): 111.CrossRefGoogle Scholar
Yarrayya, K. & Ratna Kumar, P. K. (2018). A new species of Fimbristylis (Cyperaceae) from Tamil Nadu, India. J. Jap. Bot. 93(3): 198201.Google Scholar
Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 31(13): 34063415.CrossRefGoogle ScholarPubMed