Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T14:00:32.662Z Has data issue: false hasContentIssue false

CHROMOSOME NUMBERS OF THE EDELWEISS, LEONTOPODIUM (ASTERACEAE, COMPOSITAE – GNAPHALIEAE)

Published online by Cambridge University Press:  24 February 2014

J. S. Stille
Affiliation:
Justus-Liebig-Universität Giessen, Institut für Botanik, AG Spezielle Botanik, Heinrich-Buff-Ring 38, 35392 Giessen, Germany.
M. Jaeger
Affiliation:
Justus-Liebig-Universität Giessen, Botanischer Garten, Senckenbergstr. 6, 35390 Giessen, Germany.
W. B. Dickoré
Affiliation:
Ludwig-Maximilians-Universität, Department of Systematic Botany, Botanische Staatssammlung München, Menzinger Str. 67, 80638 München, Germany.
K. Ehlers
Affiliation:
Justus-Liebig-Universität Giessen, Institut für Botanik, AG Spezielle Botanik, Heinrich-Buff-Ring 38, 35392 Giessen, Germany.
S. I. J. Holzhauer
Affiliation:
Justus-Liebig-Universität Giessen, Institut für Botanik, AG Spezielle Botanik, Heinrich-Buff-Ring 38, 35392 Giessen, Germany.
E. Mayland-Quellhorst
Affiliation:
AG Biodiversität und Evolution der Pflanzen , Fakultät V – IBU, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9–11, 26111 Oldenburg, Germany.
S. Safer
Affiliation:
Institut für Botanik der Universität Wien, Rennweg 14, 1030 Wien, Austria. Institut für Pharmazie/Pharmakognosie, Leopold-Franzens-Universität Innsbruck, Innrain 52, 6020 Innsbruck, Austria.
S. Schwaiger
Affiliation:
Institut für Pharmazie/Pharmakognosie, Leopold-Franzens-Universität Innsbruck, Innrain 52, 6020 Innsbruck, Austria.
T. F. Stuessy
Affiliation:
Institut für Botanik der Universität Wien, Rennweg 14, 1030 Wien, Austria.
H. Stuppner
Affiliation:
Institut für Pharmazie/Pharmakognosie, Leopold-Franzens-Universität Innsbruck, Innrain 52, 6020 Innsbruck, Austria.
V. Wissemann*
Affiliation:
Justus-Liebig-Universität Giessen, Institut für Botanik, AG Spezielle Botanik, Heinrich-Buff-Ring 38, 35392 Giessen, Germany. Justus-Liebig-Universität Giessen, Botanischer Garten, Senckenbergstr. 6, 35390 Giessen, Germany.
*
*Author for correspondence. E-mail: [email protected]
Get access

Abstract

The genus Leontopodium (Pers.) R.Br. (Asteraceae, Compositae) is economically important for both pharmaceutical and horticultural purposes. This importance, however, has not led to a good understanding of species coherence and the delimitation of species. One fundamental aspect of a good understanding of a species is how many chromosomes it has and any possible indication of polyploidy. Here we present somatic chromosome numbers for 16 Leontopodium species, of which six are new for science. The results indicate basic chromosome numbers of x = 6, 8, 9 and 11, with x = 8 being most frequent among the species examined. While obviously including several distantly related lineages, the x = 8 species have distributions that are concentrated in the centre of diversity of the genus in southwest China. We identified two ‘species-pairs’ (Leontopodium dedekensiiL. sinense and L. soulieiL. calocephalum) in which the tetraploid species has more vigorous growth, but is confined geographically to the centre of diversity. The diploid species ascend to generally higher elevations and extend more towards the Tibetan Plateau. In contrast, our data also suggest range expansions in other polyploid species, such as the hexaploid Leontopodium ochroleucum extending into the mountains of Central Asia. Deviations from x = 8 are found at the edges of the wide Eurasian distribution of the genus. These may relate to subsequent range expansions into the Himalayas, northern Asia, the Far East, and a far disjunctive expansion to the mountains of Europe. This implies an increased ability of these species to colonise mountain floras and adapt to different environmental conditions. Thus, formation of higher ploidy levels in general might be significant for a successful radiation process.

Type
Articles
Copyright
Copyright © Trustees of the Royal Botanic Garden Edinburgh 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderberg, A. A. (1991). Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Bot. 104: 1195.Google Scholar
Arano, H. (1956). Karyotaxonomic studies in tribe Tubuliflorae of Compositae, I. The karyotype analysis and its phylogenetic consideration in subtribe Gnaphaliineae. Jap. J. Genet. 31: 137143.CrossRefGoogle Scholar
Arano, H. (1963). Cytological studies in the subfamily Carduoideae (Compositae) of Japan, XIII. The karyotype analysis on genus Artemisia (3). Bot. Mag. (Tokyo) 76: 459465.CrossRefGoogle Scholar
Bayer, R. J., Breitwieser, I., Ward, J. & Puttock, C. G. (2007). Tribe Gnaphalieae (Cass.) Lecoq & Juillet (1831). In: Kadereit, J. W. & Jeffrey, C. (eds) The Families and Genera of Vascular Plants, Vol. 8, pp. 246284. Berlin: Springer.Google Scholar
Blöch, C. (2005). Phylogenetic relationships of Leontopodium alpinum and its relatives. Diploma thesis, Universität Wien.Google Scholar
Blöch, C., Dickoré, W. B., Samuel, R. & Stuessy, T. F. (2010). Molecular phylogeny of the edelweiss (Leontopodium, Asteraceae – Gnaphalieae). Edinburgh J. Bot. 67(2): 235264.Google Scholar
Briggs, D. & Walters, S. M. (1997). Plant Variation and Evolution, 3rd edition. Cambridge, UK: Cambridge University Press.Google Scholar
Butorina, A. K. & Do, N. T. (2008). The rhythms of daily mitotic activity in Vigna radiata (L.) R. Wilczek. Tsitologiia 50: 729733.Google Scholar
Cota, J. H. & Philbrick, C. T. (1994). Chromosome number variation and polyploidy in the genus Echinocereus (Cactaceae). Amer. J. Bot. 81: 10541062.CrossRefGoogle Scholar
Darlington, C. D. & Janaki Ammal, E. K. (1945). Chromosome Atlas of Cultivated Plants. London: George Allen & Unwin.Google Scholar
Darlington, C. D. & Wylie, A. P. (1955). Chromosome Atlas of Flowering Plants, 2nd edition. London: George Allen & Unwin.Google Scholar
Dobner, M. J., Schwaiger, S., Jenewein, I. C. H. & Stuppner, H. (2003). Antibacterial activity of Leontopodium alpinum (Edelweiss). J. Ethnopharmacol. 89: 301303.CrossRefGoogle ScholarPubMed
Erhardt, A. (1993). Pollination of the edelweiss, Leontopodium alpinum. Bot. J. Linn. Soc. 111: 229240.CrossRefGoogle Scholar
Galbany-Casals, M. & Romo, A. M. (2008). Polyploidy and new chromosome counts in Helichrysum (Asteraceae, Gnaphalieae). Bot. J. Linn. Soc. 158: 511521.CrossRefGoogle Scholar
Grabherr, G. (2009). Biodiversity in the high ranges of the Alps: ethnobotanical and climate change perspectives. Global Environ. Chang. 19: 167172.Google Scholar
Handel-Mazzetti, H. (1927). Systematische Monographie der Gattung Leontopodium. Beih. Bot. Centralbl. 44, Abt. 2. Dresden-N: Verlag von C. Heinrich.Google Scholar
ICNA Database: Index to Chromosome numbers in Asteraceae. www.lib.kobe-u.ac.jp/infolib/meta_pub/G0000003asteraceae_e (accessed 1 July 2013).Google Scholar
IPCN: Index to Plant Chromosome Numbers. Missouri Botanical Garden. http://mobot.mobot.org/W3T/Search/ipcn.html (accessed 28 April 2009).Google Scholar
Kadereit, J. W. & Jeffrey, C. (eds) (2007). Flowering Plants, Eudicots, Asterales. In: Kubitzki, K. (series ed.) The Families and Genera of Vascular Plants, Vol. VIII. Berlin: Springer-Verlag.Google Scholar
Khatoon, S. & Ali, S. I. (1988). Chromosome numbers in Compositae from Pakistan. Candollea 43: 455465.Google Scholar
Krasnikova, S. A., Krogulevich, R. E. & Rostovtseva, T. S. (1984). Izdatel’stvo “Nauka”. In: Khromosomnye Chisla Tsvetkovykh Rastenii i Sibiri Dal’nego Vostoka. Novosibirsk: Sibirskoe Otdelenie.Google Scholar
Krogulevich, R. E. (1976). Chromosome numbers of plant species from the Tunkinsky Alpes (East Sayan). News Sib. Depart. Acad. Sci. USSR, Ser. Biol. 15: 4652.Google Scholar
Krogulevich, R. E. (1978). Karyological analysis of the species of the flora of eastern Sayana. In: Malyshev, L. I. & Peshlcova, G. A. (eds) Flora of the Prebaikal, pp. 1948. Novosibirsk.Google Scholar
Li, J. X., Lin, C. J., Yang, X. P. & Jia, Z. J. (2006). New bisabolane sesquiterpenes and coumarin from Leontopodium longifolium. Chem. Biodivers. 3: 783790.Google Scholar
Loureiro, J., Kopecký, D., Castro, S., Santos, C. & Silveira, P. (2007). Flow cytometric and cytogenetic analyses of Iberian Peninsula Festuca spp. Plant Syst. Evol. 269: 89105.Google Scholar
Meng, Y., Nie, Z.-L., Sun, H. & Yang, Y.-P. (2012). Chromosome numbers and polyploidy in Leontopodium (Asteraceae: Gnaphalieae) from the Qinghai-Tibet Plateau of S.W. China. Caryologia 65: 8793.Google Scholar
Murin, A. & Paclova, L. (1979). Asteraceae. In: IOPB chromosome number reports LXIV. Taxon 28: 404.Google Scholar
Nishikawa, T. (1985). Chromosome counts of flowering plants of Hokkaido (9). J. Hokkaido Univ. Educ. 2B 36: 2540.Google Scholar
Pellicer, J., Garcia, S., Garnatje, T., Dariimaa, S., Korobkov, A. A. & Vallès, J. (2007). Chromosome numbers in some Artemisia (Asteraceae, Anthemideae) species and genome size variation in its subgenus Dracunculus: karyological, systematic and phylogenetic implications. Chromosome Bot. 2: 4553.Google Scholar
Reisinger, U., Schwaiger, S., Zeller, I., Messner, B., Stigler, R., Wiedemann, D.et al. (2009). Leoligin, the major lignan from Edelweiss, inhibits intimal hyperplasia of venous bypass grafts. Cardiovasc. Res. 82: 542549.Google Scholar
Russell, A., Safer, S., Weiss-Schneeweiss, H., Temsch, E., Stuppner, H., Stuessy, T. F. & Samuel, R. (2013). Chromosome counts and genome size of Leontopodium species (Asteraceae: Gnaphalieae) from south-western China. Bot. J. Linn. Soc. 171: 627636.Google Scholar
Safer, S., Cicek, S. S., Pieri, V., Schwaiger, S., Schneider, P., Wissemann, V. & Stuppner, H. (2011a). Metabolic fingerprinting of Leontopodium species (Asteraceae) by means of 1H-NMR and HPLCESI-MS. Phytochemistry 72: 13791389.Google Scholar
Safer, S., Tremetsberger, K., Guo, Y.-P., Kohl, G., Samuel, M. R., Stuessy, T. F. & Stuppner, H. (2011b). Phylogenetic relationships in the genus Leontopodium (Asteraceae: Gnaphalieae) based on AFLP data. Bot. J. Linn. Soc. 165: 364377.Google Scholar
Sakai, K. (1934). Studies on the chromosome number in alpine plants, I. Jap. J. Genet. 9: 226230.Google Scholar
Schwaiger, S., Adams, M., Seger, C., Ellmerer, E. P., Bauer, R. & Stuppner, H. (2004). New constituents of Leontopodium alpinum and their in vitro leukotriene biosynthesis inhibitory activity. Planta Med. 70: 978985.Google Scholar
Schwaiger, S., Cervellati, R., Seger, C., Ellmerer, E. P., About, N., Renimel, I.et al. (2005). Leontopodic acid – a novel highly substituted glucaric acid derivative from Edelweiss (Leontopodium alpinum Cass.) and its antioxidative and DNA protecting properties. Tetrahedron 61: 46214630.CrossRefGoogle Scholar
Schwaiger, S., Seger, C., Wiesbauer, B., Schneider, P., Ellmerer, E. P., Sturm, S. & Stuppner, H. (2006). Development of an HPLC-PAD-MS assay for the identification and quantification of major phenolic Edelweiss (Leontopodium alpinum Cass.) constituents. Phytochem. Analysis 17: 291298.Google Scholar
Siljak, S. (1977). In: IOPB chromosome number reports LVII. Taxon 26: 443452.Google Scholar
Sokolovskaja, A. & Strelkova, O. (1938). Compt.-Rend. Acad. Sci. URSS 21: 68 [not seen, reference from Darlington & Wylie (1955)].Google Scholar
Stebbins, G. L. (1950). Variation and Evolution in Plants. New York: Columbia University Press.Google Scholar
Suda, J., Krahulcova, A., Travnicek, P., Rosenbaumova, R., Peckert, T. & Krahulec, F. (2007). Genome size variation and species relationships in Hieracium subgenus Pilosella (Asteraceae) as inferred by flow cytometry. Ann. Bot. 100: 13231335.Google Scholar
Vigneron, J. P., Rassart, M., Vértesy, Z., Kertész, K., Sarrazin, M., Biró, L. P., Ertz, D. & Lousse, V. (2005). Optical structure and function of the white filamentary hair covering the edelweiss bracts. Phys. Rev. E 71: 011906.CrossRefGoogle ScholarPubMed
Vir Jee, D. U. & Kachroo, P. (1985). Chromosomal conspectus of some alpine-subalpine taxa of Kashmir Himalaya. Chromosome Infor. Serv. 39: 3335.Google Scholar
Ward, J. M., Bayer, R. J., Breitwieser, I., Smissen, R. D., Galbany-Casals, M. & Unwin, M. (2009). Gnaphalieae. In: Funk, V. A., Susanna, A., Stuessy, T. & Bayer, R. J. (eds) Systematics, Evolution, and Biogeography of Compositae, pp. 539588. Vienna: IAPT.Google Scholar
Zhukova, P. G. (1980). Chromosome numbers of some Southern Chukotka plant species. Bot. Zhurn. 65: 5159.Google Scholar